Citation: | LU Ting-ting, YANG Run-jie, LIU Feng-qin, ZHAO Hong-liang. Effect of solid-liquid stirring on membrane deformation in the slurry electrolysis tank[J]. Chinese Journal of Engineering, 2023, 45(7): 1205-1213. doi: 10.13374/j.issn2095-9389.2022.05.23.008 |
[1] |
邱定蕃. 礦漿電解的特點和研究背景. 礦冶, 1998, 7(4):40
Qiu D F. The characteristics of slurry electrolysis and research background. Min Metall, 1998, 7(4): 40
|
[2] |
王成彥, 尹飛, 陳永強, 等. 一種礦漿電解裝置: 中國專利, 202968719U. 2013-06-05
Wang C Y, Yin F, Chen Y Q, et al. A Slurry Electrolysis Device: China Patent, 202968719U. 2013-06-05
|
[3] |
楊顯萬, 張英杰, 鄧綸浩, 等. 礦漿電解過程的浸出機理. 中國工程科學, 2000, 2(6):49 doi: 10.3969/j.issn.1009-1742.2000.06.010
Yang X W, Zhang Y J, Deng L H, et al. Leaching mechanism of slurry electrolysis. Eng Sci, 2000, 2(6): 49 doi: 10.3969/j.issn.1009-1742.2000.06.010
|
[4] |
陳永強, 劉勇, 王成彥, 等. 高砷銻金精礦礦漿電解連續擴大試驗. 有色金屬(冶煉部分), 2015(12):5
Chen Y Q, Liu Y, Wang C Y, et al. Continuous expanding test on slurry electrolysis of As-rich antimonic gold concentrate. Nonferrous Met Extr Metall, 2015(12): 5
|
[5] |
王成彥, 邱定蕃, 江培海, 等. 礦漿電解法處理脆硫銻鉛礦的介質體系選擇. 有色金屬, 2002, 2:35
Wang C Y, Qiu D F, Jiang P H, et al. Slurry electrolysis medium selection for jamesonite treatment. Nonferrous Met, 2002, 2: 35
|
[6] |
Wang C Y, Qiu D F, Yin F, et al. Slurry electrolysis of ocean polymetallic nodule. Trans Nonferrous Met Soc China, 2010, 20: 60 doi: 10.1016/S1003-6326(10)60013-1
|
[7] |
Li F F, Chen M J, Shu J C, et al. Copper and gold recovery from CPU sockets by one-step slurry electrolysis. J Clean Prod, 2019, 213: 673 doi: 10.1016/j.jclepro.2018.12.161
|
[8] |
Zhang Y L, Wang C Y, Ma B Z, et al. Extracting antimony from high arsenic and gold-containing stibnite ore using slurry electrolysis. Hydrometallurgy, 2019, 186: 284 doi: 10.1016/j.hydromet.2019.04.026
|
[9] |
王成彥, 邱定蕃, 江培海, 等. 輝鉍礦礦漿電解過程硫的形成及氧化機理. 有色金屬(冶煉部分), 2002(6):2
Wang C Y, Qiu D F, Jiang P H, et al. Foramtion and oxidation mechanism of sulfur in the process of slurry electrolysis on bismuthinite. Nonferrous Met Extr Metall, 2002(6): 2
|
[10] |
Zhang Y L, Qiu D F, Wang C Y, et al. Anodic process of stibnite in slurry electrolysis: The direct collision oxidation. Chin J Chem Eng, 2022, 41: 466 doi: 10.1016/j.cjche.2021.12.011
|
[11] |
Lu T T, Shen H, Na G Y, et al. CFD simulation of suspension characteristics in a stirred tank for slurry electrolysis. Metall Mater Trans B, 2022, 53(3): 1747 doi: 10.1007/s11663-022-02484-8
|
[12] |
張永祿, 王成彥, 陳永強, 等. 高砷銻金精礦礦漿電解生產實踐. 有色金屬(冶煉部分), 2014(11):16
Zhang Y L, Wang C Y, Chen Y Q, et al. Plant practice of slurry electrolysis of high arsenic gold-bearing stibnite concentrate. Nonferrous Met Extr Metall, 2014(11): 16
|
[13] |
楊德澤. 礦漿電解從WPCBs中回收金屬的實驗室放大工藝研究[學位論文]. 綿陽: 西南科技大學, 2019
Yang D Z. Laboratory Amplification for Metals Recovering From WPCBs by Slurry Electrolysis [Dissertation]. Mianyang: Southwest University of Science and Technology, 2019
|
[14] |
Heners J P, Radtke L, Hinze M, et al. Adjoint shape optimization for fluid–structure interaction of ducted flows. Computational Mechanics, 2017, 61(3): 259
|
[15] |
Khalafvand S S, Ng E Y K, Zhong L. CFD simulation of flow through heart: A perspective review. Comput Methods Biomech Biomed Eng, 2011, 14(1): 113 doi: 10.1080/10255842.2010.493515
|
[16] |
Zhu H, Sun Q L, Liu X F, et al. Fluid–structure interaction-based aerodynamic modeling for flight dynamics simulation of parafoil system. Nonlinear Dyn, 2021, 104(4): 3445 doi: 10.1007/s11071-021-06486-0
|
[17] |
Yang M, Wei Y S, Zheng X, et al. CFD simulation and optimization of membrane scouring and nitrogen removal for an airlift external circulation membrane bioreactor. Bioresour Technol, 2016, 219: 566 doi: 10.1016/j.biortech.2016.07.139
|
[18] |
Jin Y, Liu C L, Song X F, et al. Computational fluid dynamics simulation as a tool for optimizing the hydrodynamic performance of membrane bioreactors. RSC Adv, 2019, 9(55): 32034 doi: 10.1039/C9RA06706J
|
[19] |
Gowda H G B, Wallrabe U. Simulation of an adaptive fluid-membrane piezoelectric lens. Micromachines, 2019, 10(12): 797 doi: 10.3390/mi10120797
|
[20] |
吳姝, 宋俊偉, 魏新華, 等. 植保機械用泵穩壓氣室隔膜變形特性研究. 振動與沖擊, 2019, 38(7):257
Wu S, Song J W, Wei X H, et al. Deformation characteristics of stable pressure chamber diaphragm for pumps of plant protection machinery. J Vib Shock, 2019, 38(7): 257
|
[21] |
Ageze M, Hu Y F, Wu H C. Comparative study on uni- and Bi-directional fluid structure coupling of wind turbine blades. Energies, 2017, 10(10): 1499 doi: 10.3390/en10101499
|
[22] |
Tezduyar T E, Sathe S, Pausewang J, et al. Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech, 2008, 43(1): 39 doi: 10.1007/s00466-008-0261-7
|
[23] |
Sotiropoulos F, Yang X L. Immersed boundary methods for simulating fluid–structure interaction. Prog Aerosp Sci, 2014, 65: 1 doi: 10.1016/j.paerosci.2013.09.003
|
[24] |
張亮, 何環宇, 張學偉, 等. 垂直軸水輪機單向流固耦合數值研究. 華中科技大學學報(自然科學版), 2014, 42(5):80
Zhang L, He H Y, Zhang X W, et al. One way fluid and structure interaction numerical analysis of vertical axis tidal turbine. J Huazhong Univ Sci Technol Nat Sci, 2014, 42(5): 80
|
[25] |
劉厚林, 徐歡, 吳賢芳, 等. 基于流固耦合的導葉式離心泵強度分析. 振動與沖擊, 2013, 32(12):27 doi: 10.3969/j.issn.1000-3835.2013.12.006
Liu H L, Xu H, Wu X F, et al. Strength analysis of a diffuser pump based on fluid-structure interaction. J Vib Shock, 2013, 32(12): 27 doi: 10.3969/j.issn.1000-3835.2013.12.006
|
[26] |
Shahrestani A B, Alshuraiaan B, Izadi M. Combined natural convection-FSI inside a circular enclosure divided by a movable barrier. Int Commun Heat Mass Transf, 2021, 126: 105426 doi: 10.1016/j.icheatmasstransfer.2021.105426
|