Citation: | TAN Pei-long, ZHANG Jian-liang, HUANG Jian-qiang, WANG Yao-zu, LIU Zheng-jian, HAN Feng-guang. Effect of sinter basicity on the interactive reaction of composite burdens[J]. Chinese Journal of Engineering, 2023, 45(6): 890-898. doi: 10.13374/j.issn2095-9389.2022.05.16.001 |
[1] |
談承麟, 毛曉明, 徐萬仁. 塊礦配比對高爐配合爐料冶金性能影響規律研究. 寶鋼技術, 2021(2):37
Tan C L, Mao X M, Xu W R. Effect of lump ore ratio on metallurgical properties of blast furnace burden. Baosteel Technol, 2021(2): 37
|
[2] |
牛樂樂, 劉征建, 張建良, 等. 鼓風條件及塊礦比例對爐料軟熔性能的影響. 中國冶金, 2019, 29(7):6
Niu L L, Liu Z J, Zhang J L, et al. Effect of blast conditions and lump ore ratio on softening-melting properties of iron-bearing charge. China Metall, 2019, 29(7): 6
|
[3] |
朱勇軍, 徐輝, 王士彬. 寶鋼4號高爐提高塊礦比例實踐. 煉鐵, 2019, 38(1):32
Zhu Y J, Xu H, Wang S B. Production practice under higher lump ore ratio in baosteel No.4 BF. Ironmaking, 2019, 38(1): 32
|
[4] |
薄勝岳, 胡長慶, 師學峰, 等. 鎂質熔劑性球團礦發展現狀及展望. 華北理工大學學報(自然科學版), 2021, 43(3):40
Bo S Y, Hu C Q, Shi X F, et al. Development and prospect of magnesium flux pellets. J North China Univ Sci Technol Nat Sci, 2021, 43(3): 40
|
[5] |
Shen F M, Gao Q J, Wei G, et al. Densification process of MgO bearing pellets. Steel Res Int, 2015, 86(6): 644 doi: 10.1002/srin.201400372
|
[6] |
王新東, 金永龍. 高爐使用高比例球團的戰略思考與球團生產的試驗研究. 鋼鐵, 2021, 56(5):7
Wang X D, Jin Y L. Strategy analysis and testing study of high ratio of pellet utilized in blast furnace. Iron &Steel, 2021, 56(5): 7
|
[7] |
張晨. 利用粉塵生產適合高爐冶煉的爐料—金屬化爐料力學性能研究 // 2020年全國冶金能源環保技術交流會會議文集. 唐山, 2020: 338
Zang C. Using dust to produce charge suitable for blast furnace smelting—Research on mechanical properties of metallized charge // Proceedings of the 2020 National Metallurgical Energy and Environmental Protection Technology Exchange Conference. Tangshan, 2020: 338
|
[8] |
張旭孝, 韓宏亮, 姜曦. 高爐添加金屬化球團爐料的冶金性能試驗. 中國冶金, 2015, 25(5):15
Zhang X X, Han H L, Jiang X. Experiment on metallurgical properties of blast furnace burden containing metalized pellets. China Metall, 2015, 25(5): 15
|
[9] |
高建軍, 張穎異, 齊淵洪, 等. 高爐冶煉預還原爐料能耗分析. 鋼鐵, 2014, 49(7):61
Gao J J, Zhang Y Y, Qi Y H, et al. Energy consumption analysis on blast furnace ironmaking process using pre-reduced burden. Iron &Steel, 2014, 49(7): 61
|
[10] |
彭巖, 曹先常, 張玉柱. 鋼鐵典型工序流程節能技術新進展. 中國冶金, 2017, 27(5):8
Peng Y, Cao X C, Zhang Y Z. New progresses of energy saving solutions in typical iron and steel making process flow. China Metall, 2017, 27(5): 8
|
[11] |
葉匡吾, 馮根生. 我國球團礦的發展及應用—高爐煉鐵節能、減排最重要的技術措施 // 2010年全國煉鐵生產技術會議暨煉鐵學術年會文集(上). 北京, 2017, 27(05):8
Ye K W, Feng G S. Development and application of pellets in my country—the most important technical measures for energy saving and emission reduction in blast furnace ironmaking // Proceedings of the 2010 National Ironmaking Production Technology Conference and Ironmaking Academic Annual Conference (Part 1). Beijing, 2017, 27(05): 8
|
[12] |
許滿興. 燒結礦冶金性能對其質量和高爐主要操作指標的影響. 燒結球團, 2014, 39(3):1
Xu M X. Influences of metallurgical properties of sinter on its quality and major operation indexes of blast furnace. Sinter Pelletizing, 2014, 39(3): 1
|
[13] |
蘭東, 李廷樂, 孫長余, 等. 含鈦高堿度燒結礦軟熔成渣行為. 鋼鐵, 2018, 53(9):7
Lan D, Li T L, Sun C Y, et al. Slag evolution of Ti-bearing high basicity sinter during softening-melting process. Iron &Steel, 2018, 53(9): 7
|
[14] |
陳偉, 李俊平, 申勇, 等. 燒結礦堿度變化對軟熔滴落性能影響的試驗研究. 河南冶金, 2016, 24(6):9
Chen W, Li J P, Shen Y, et al. Test study on the influence of sinter basicity change on the softening dripping behavior. Henan Metall, 2016, 24(6): 9
|
[15] |
Loo C E, Matthews L T, O'Dea D P. Lump ore and sinter behaviour during softening and melting. ISIJ Int, 2011, 51(6): 930 doi: 10.2355/isijinternational.51.930
|
[16] |
張開發, 吳勝利, 劉新亮等. 不同單種爐料熔滴特征及初渣形成變化. 科學技術與工程, 2015, 15(13):36
Zhang K F, Wu S L, Liu X L, et al. The characteristics of softening and melting and the formation of the primary slag of different ferrous burden materials. Sci Technol Eng, 2015, 15(13): 36
|
[17] |
Wu S L, Han H L, Xu H F, et al. Increasing lump ores proportion in blast furnace based on the high-temperature interactivity of iron bearing materials. ISIJ Int, 2010, 50(5): 686 doi: 10.2355/isijinternational.50.686
|
[18] |
Wu S L, Han H L, Liu X Q. Mathematical model for blast furnace burden optimization based on the high-temperature reactivity. ISIJ Int, 2010, 50(7): 987 doi: 10.2355/isijinternational.50.987
|
[19] |
吳勝利, 韓宏亮, 許海法等. 高爐內燒結礦與塊礦高溫交互反應機理研究. 過程工程學報, 2010, 10(增刊 1):37
Wu S L, Han H L, Xu H F, et al. Research on mechanism of interaction between sinter and lump ores in blast furnace. Chin J Process Eng, 2010, 10(Suppl 1): 37
|
[20] |
吳勝利, 許海法, 汪國俊, 等. 現代高爐合理使用天然塊礦的基礎研究. 北京科技大學學報. 2007, 29(3): 320
Wu S L, Xu H F, Wang G J, et al. Basic study of modern blast furnace using natural lump ores rationally. J Univ Sci Technol Beijing, 2007, 29(3): 320
|
[21] |
Wu S L, Tuo B Y, Zhang L H, et al. New evaluation methods discussion of softening-melting and dropping characteristic of BF iron bearing burden. Steel Res Int, 2014, 85(2): 233 doi: 10.1002/srin.201300061
|
[22] |
Yang W J, Zhou Z Y, Pinson D, et al. A new approach for studying softening and melting behavior of particles in a blast furnace cohesive zone. Metall Mater Trans B, 2015, 46(2): 977 doi: 10.1007/s11663-014-0223-8
|
[23] |
Nishimura T, Higuchi K, Naito M, et al. Evaluation of softening, shrinking and melting reduction behavior of raw materials for blast furnace. ISIJ Int, 2011, 51(8): 1316 doi: 10.2355/isijinternational.51.1316
|
[24] |
畢學工, 吳名, 周進東, 等. 優化高爐配礦模型的開發及應用. 煉鐵, 2017, 36(2):10
Bi X G, Wu M, Zhou J D, et al. Development and application of optimized blast furnace burdening model. Ironmaking, 2017, 36(2): 10
|
[25] |
龍防, 沈峰滿, 郭憲臻, 等. 高爐合理爐料結構探析. 煉鐵, 2020, 39(3):35
Long F, Shen F M, Guo X Z, et al. Discussion on adequate BF burden mix. Ironmaking, 2020, 39(3): 35
|
[26] |
牛西園. 冶煉低品位礦高爐合理爐料結構研究. 冶金與材料, 2018, 38(4):85
Niu X Y. Study on reasonable burden structure of blast furnace for smelting low-grade ore. Metall Mater, 2018, 38(4): 85
|
[27] |
潘玉柱. 高爐含鐵爐料交互作用及其對軟熔帶透氣性影響研究[學位論文]. 北京: 北京科技大學, 2020
Pan Y Z. Study on the Interaction of Iron-containing Burdens and its Influence on Permeability of Cohesive Zone in Blast Furnace [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
|
[28] |
呂慶, 王福佳, 李豪杰. 宣鋼高爐合理爐料結構熔滴試驗. 鋼鐵, 2016, 51(6):19
Lü Q, Wang F J, Li H J. Rational burden structure by droplet test in Xuansteel blast furnace. Iron &Steel, 2016, 51(6): 19
|
[29] |
Liu Z G, Chu M S, Wang H T, et al. Effect of MgO content in sinter on the softening–melting behavior of mixed burden made from chromium-bearing vanadium–titanium magnetite. Int J Miner Metall Mater, 2016, 23(1): 25 doi: 10.1007/s12613-016-1207-2
|
[30] |
周進東, 李九林, 竺龍. 鋅對高爐軟熔帶性能及滴落帶鋅收入量的影響. 武漢科技大學學報, 2020, 43(4):241
Zhou J D, Li J L, Zhu L. Effects of zinc on the properties of blast furnace cohesive zone and zinc accumulation in dropping zone. J Wuhan Univ Sci Technol, 2020, 43(4): 241
|