<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 6
May  2023
Turn off MathJax
Article Contents
TAN Pei-long, ZHANG Jian-liang, HUANG Jian-qiang, WANG Yao-zu, LIU Zheng-jian, HAN Feng-guang. Effect of sinter basicity on the interactive reaction of composite burdens[J]. Chinese Journal of Engineering, 2023, 45(6): 890-898. doi: 10.13374/j.issn2095-9389.2022.05.16.001
Citation: TAN Pei-long, ZHANG Jian-liang, HUANG Jian-qiang, WANG Yao-zu, LIU Zheng-jian, HAN Feng-guang. Effect of sinter basicity on the interactive reaction of composite burdens[J]. Chinese Journal of Engineering, 2023, 45(6): 890-898. doi: 10.13374/j.issn2095-9389.2022.05.16.001

Effect of sinter basicity on the interactive reaction of composite burdens

doi: 10.13374/j.issn2095-9389.2022.05.16.001
More Information
  • Corresponding author: E-mail: liuzhengjian@ustb.edu.cn
  • Received Date: 2022-05-16
    Available Online: 2022-08-17
  • Publish Date: 2023-05-31
  • With the deepening of the concept of interactive reaction and the development of several studies, metallurgists are no longer simply concerned with the metallurgical properties of a single charge. Instead, they comprehensively consider the interactive reaction of composite burdens. The interactive reaction is mainly affected by the chemical composition, microstructure, reduction temperature, and other factors of the ferrous burdens. In this study, taking a sinter with different basicities and a mixed ore of sinter and lump as the research object, the effect of sinter basicity on the smelting and dripping paraments of a composite burden and the interactive reaction between different burdens was investigated using melting–dripping equipment. The results show that the dripping temperature of a single sinter increases with sinter basicity. In the integrated burdens protocol, the proportion of lump ore increased, and the interaction between the burdens was enhanced, which is mainly manifested as a reduced softening start temperature and melting start temperature of the composite burden. The air permeability of the mixed charge was improved. A change of burden structure enhances the interaction between minerals with increasing sinter basicity, resulting in a change in the liquid phase composition, which reduces the melting point of the primary slag phase, and when the basicity of the sintered is too high, it will deteriorate the gas permeability of the material column. This result is not conducive to the intensive smelting of blast furnaces. At the same time, the sintered mineral phase changes throughout the reduction process were characterized using SEM-EDS and XRD, and the main phases in the slag phase are wustite and calcium silicate. The interactive reaction between the sinter and lump produces low melting point materials, which is verified by calculating the phase diagram of CaO–SiO2–FeO. With increasing sinter basicity, the content of 2CaO·SiO2 at different breakpoints decreased. This result shows that the high melting point phase formed during the reduction process of the sinter decreases, the liquid phase formation temperature of the composite burden decreases, and the interaction between the burdens increases. Therefore, appropriately increasing the sinter basicity and increasing the lump ore proportion benefits the enhanced smelting of a blast furnace. The theoretical and experimental results obtained in this research are of great importance for improving the production application of the proportion of lump in the furnace and developing efficient and low-carbon ironmaking.

     

  • loading
  • [1]
    談承麟, 毛曉明, 徐萬仁. 塊礦配比對高爐配合爐料冶金性能影響規律研究. 寶鋼技術, 2021(2):37

    Tan C L, Mao X M, Xu W R. Effect of lump ore ratio on metallurgical properties of blast furnace burden. Baosteel Technol, 2021(2): 37
    [2]
    牛樂樂, 劉征建, 張建良, 等. 鼓風條件及塊礦比例對爐料軟熔性能的影響. 中國冶金, 2019, 29(7):6

    Niu L L, Liu Z J, Zhang J L, et al. Effect of blast conditions and lump ore ratio on softening-melting properties of iron-bearing charge. China Metall, 2019, 29(7): 6
    [3]
    朱勇軍, 徐輝, 王士彬. 寶鋼4號高爐提高塊礦比例實踐. 煉鐵, 2019, 38(1):32

    Zhu Y J, Xu H, Wang S B. Production practice under higher lump ore ratio in baosteel No.4 BF. Ironmaking, 2019, 38(1): 32
    [4]
    薄勝岳, 胡長慶, 師學峰, 等. 鎂質熔劑性球團礦發展現狀及展望. 華北理工大學學報(自然科學版), 2021, 43(3):40

    Bo S Y, Hu C Q, Shi X F, et al. Development and prospect of magnesium flux pellets. J North China Univ Sci Technol Nat Sci, 2021, 43(3): 40
    [5]
    Shen F M, Gao Q J, Wei G, et al. Densification process of MgO bearing pellets. Steel Res Int, 2015, 86(6): 644 doi: 10.1002/srin.201400372
    [6]
    王新東, 金永龍. 高爐使用高比例球團的戰略思考與球團生產的試驗研究. 鋼鐵, 2021, 56(5):7

    Wang X D, Jin Y L. Strategy analysis and testing study of high ratio of pellet utilized in blast furnace. Iron &Steel, 2021, 56(5): 7
    [7]
    張晨. 利用粉塵生產適合高爐冶煉的爐料—金屬化爐料力學性能研究 // 2020年全國冶金能源環保技術交流會會議文集. 唐山, 2020: 338

    Zang C. Using dust to produce charge suitable for blast furnace smelting—Research on mechanical properties of metallized charge // Proceedings of the 2020 National Metallurgical Energy and Environmental Protection Technology Exchange Conference. Tangshan, 2020: 338
    [8]
    張旭孝, 韓宏亮, 姜曦. 高爐添加金屬化球團爐料的冶金性能試驗. 中國冶金, 2015, 25(5):15

    Zhang X X, Han H L, Jiang X. Experiment on metallurgical properties of blast furnace burden containing metalized pellets. China Metall, 2015, 25(5): 15
    [9]
    高建軍, 張穎異, 齊淵洪, 等. 高爐冶煉預還原爐料能耗分析. 鋼鐵, 2014, 49(7):61

    Gao J J, Zhang Y Y, Qi Y H, et al. Energy consumption analysis on blast furnace ironmaking process using pre-reduced burden. Iron &Steel, 2014, 49(7): 61
    [10]
    彭巖, 曹先常, 張玉柱. 鋼鐵典型工序流程節能技術新進展. 中國冶金, 2017, 27(5):8

    Peng Y, Cao X C, Zhang Y Z. New progresses of energy saving solutions in typical iron and steel making process flow. China Metall, 2017, 27(5): 8
    [11]
    葉匡吾, 馮根生. 我國球團礦的發展及應用—高爐煉鐵節能、減排最重要的技術措施 // 2010年全國煉鐵生產技術會議暨煉鐵學術年會文集(上). 北京, 2017, 27(05):8

    Ye K W, Feng G S. Development and application of pellets in my country—the most important technical measures for energy saving and emission reduction in blast furnace ironmaking // Proceedings of the 2010 National Ironmaking Production Technology Conference and Ironmaking Academic Annual Conference (Part 1). Beijing, 2017, 27(05): 8
    [12]
    許滿興. 燒結礦冶金性能對其質量和高爐主要操作指標的影響. 燒結球團, 2014, 39(3):1

    Xu M X. Influences of metallurgical properties of sinter on its quality and major operation indexes of blast furnace. Sinter Pelletizing, 2014, 39(3): 1
    [13]
    蘭東, 李廷樂, 孫長余, 等. 含鈦高堿度燒結礦軟熔成渣行為. 鋼鐵, 2018, 53(9):7

    Lan D, Li T L, Sun C Y, et al. Slag evolution of Ti-bearing high basicity sinter during softening-melting process. Iron &Steel, 2018, 53(9): 7
    [14]
    陳偉, 李俊平, 申勇, 等. 燒結礦堿度變化對軟熔滴落性能影響的試驗研究. 河南冶金, 2016, 24(6):9

    Chen W, Li J P, Shen Y, et al. Test study on the influence of sinter basicity change on the softening dripping behavior. Henan Metall, 2016, 24(6): 9
    [15]
    Loo C E, Matthews L T, O'Dea D P. Lump ore and sinter behaviour during softening and melting. ISIJ Int, 2011, 51(6): 930 doi: 10.2355/isijinternational.51.930
    [16]
    張開發, 吳勝利, 劉新亮等. 不同單種爐料熔滴特征及初渣形成變化. 科學技術與工程, 2015, 15(13):36

    Zhang K F, Wu S L, Liu X L, et al. The characteristics of softening and melting and the formation of the primary slag of different ferrous burden materials. Sci Technol Eng, 2015, 15(13): 36
    [17]
    Wu S L, Han H L, Xu H F, et al. Increasing lump ores proportion in blast furnace based on the high-temperature interactivity of iron bearing materials. ISIJ Int, 2010, 50(5): 686 doi: 10.2355/isijinternational.50.686
    [18]
    Wu S L, Han H L, Liu X Q. Mathematical model for blast furnace burden optimization based on the high-temperature reactivity. ISIJ Int, 2010, 50(7): 987 doi: 10.2355/isijinternational.50.987
    [19]
    吳勝利, 韓宏亮, 許海法等. 高爐內燒結礦與塊礦高溫交互反應機理研究. 過程工程學報, 2010, 10(增刊 1):37

    Wu S L, Han H L, Xu H F, et al. Research on mechanism of interaction between sinter and lump ores in blast furnace. Chin J Process Eng, 2010, 10(Suppl 1): 37
    [20]
    吳勝利, 許海法, 汪國俊, 等. 現代高爐合理使用天然塊礦的基礎研究. 北京科技大學學報. 2007, 29(3): 320

    Wu S L, Xu H F, Wang G J, et al. Basic study of modern blast furnace using natural lump ores rationally. J Univ Sci Technol Beijing, 2007, 29(3): 320
    [21]
    Wu S L, Tuo B Y, Zhang L H, et al. New evaluation methods discussion of softening-melting and dropping characteristic of BF iron bearing burden. Steel Res Int, 2014, 85(2): 233 doi: 10.1002/srin.201300061
    [22]
    Yang W J, Zhou Z Y, Pinson D, et al. A new approach for studying softening and melting behavior of particles in a blast furnace cohesive zone. Metall Mater Trans B, 2015, 46(2): 977 doi: 10.1007/s11663-014-0223-8
    [23]
    Nishimura T, Higuchi K, Naito M, et al. Evaluation of softening, shrinking and melting reduction behavior of raw materials for blast furnace. ISIJ Int, 2011, 51(8): 1316 doi: 10.2355/isijinternational.51.1316
    [24]
    畢學工, 吳名, 周進東, 等. 優化高爐配礦模型的開發及應用. 煉鐵, 2017, 36(2):10

    Bi X G, Wu M, Zhou J D, et al. Development and application of optimized blast furnace burdening model. Ironmaking, 2017, 36(2): 10
    [25]
    龍防, 沈峰滿, 郭憲臻, 等. 高爐合理爐料結構探析. 煉鐵, 2020, 39(3):35

    Long F, Shen F M, Guo X Z, et al. Discussion on adequate BF burden mix. Ironmaking, 2020, 39(3): 35
    [26]
    牛西園. 冶煉低品位礦高爐合理爐料結構研究. 冶金與材料, 2018, 38(4):85

    Niu X Y. Study on reasonable burden structure of blast furnace for smelting low-grade ore. Metall Mater, 2018, 38(4): 85
    [27]
    潘玉柱. 高爐含鐵爐料交互作用及其對軟熔帶透氣性影響研究[學位論文]. 北京: 北京科技大學, 2020

    Pan Y Z. Study on the Interaction of Iron-containing Burdens and its Influence on Permeability of Cohesive Zone in Blast Furnace [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
    [28]
    呂慶, 王福佳, 李豪杰. 宣鋼高爐合理爐料結構熔滴試驗. 鋼鐵, 2016, 51(6):19

    Lü Q, Wang F J, Li H J. Rational burden structure by droplet test in Xuansteel blast furnace. Iron &Steel, 2016, 51(6): 19
    [29]
    Liu Z G, Chu M S, Wang H T, et al. Effect of MgO content in sinter on the softening–melting behavior of mixed burden made from chromium-bearing vanadium–titanium magnetite. Int J Miner Metall Mater, 2016, 23(1): 25 doi: 10.1007/s12613-016-1207-2
    [30]
    周進東, 李九林, 竺龍. 鋅對高爐軟熔帶性能及滴落帶鋅收入量的影響. 武漢科技大學學報, 2020, 43(4):241

    Zhou J D, Li J L, Zhu L. Effects of zinc on the properties of blast furnace cohesive zone and zinc accumulation in dropping zone. J Wuhan Univ Sci Technol, 2020, 43(4): 241
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views (482) PDF downloads(91) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164