Citation: | WANG Kai, PEI Xiao-dong, YANG Tao, CHEN Rui-ding, HAO Hai-qing, JIANG Shu-guang, SUN Yong. Study on intelligent ventilation linkage control theory and supply–demand matching experiment in mines[J]. Chinese Journal of Engineering, 2023, 45(7): 1214-1224. doi: 10.13374/j.issn2095-9389.2022.05.05.003 |
[1] |
王國法, 劉峰, 龐義輝, 等. 煤礦智能化——煤炭工業高質量發展的核心技術支撐. 煤炭學報, 2019, 44(2):349 doi: 10.13225/j.cnki.jccs.2018.2041
Wang G F, Liu F, Pang Y H, et al. Coal mine intellectualization: The core technology of high quality development. J China Coal Soc, 2019, 44(2): 349 doi: 10.13225/j.cnki.jccs.2018.2041
|
[2] |
Wang K, Jiang S G, Wu Z Y, et al. Intelligent safety adjustment of branch airflow volume during ventilation-on-demand changes in coal mines. Process Saf Environ Prot, 2017, 111: 491 doi: 10.1016/j.psep.2017.08.024
|
[3] |
裴曉東, 王凱, 李曉偉, 等. 基于元胞自動機的集約化礦井調風模型分析與仿真. 中國礦業大學學報, 2017, 46(4):755 doi: 10.13247/j.cnki.jcumt.000697
Pei X D, Wang K, Li X W, et al. Analysis and simulation of intensive mine air regulation model based on cellular automaton. J China Univ Min &Technol, 2017, 46(4): 755 doi: 10.13247/j.cnki.jcumt.000697
|
[4] |
魏連江, 周福寶, 梁偉, 等. 礦井通風網絡特征參數關聯性研究. 煤炭學報, 2016, 41(7):1728
Wei L J, Zhou F B, Liang W, et al. Correlation of mine ventilation network characteristic parameters. J China Coal Soc, 2016, 41(7): 1728
|
[5] |
黃光球, 孫鵬, 陸秋琴. 風窗對井下通風系統的影響及其調節與定位優化. 中國安全生產科學技術, 2014, 10(3):160 doi: 10.11731/j.issn.1673-193x.2014.03.028
Huang G Q, Sun P, Lu Q Q. Influence of air windows on underground ventilation system and its adjusting and locating optimization. J Saf Sci Technol, 2014, 10(3): 160 doi: 10.11731/j.issn.1673-193x.2014.03.028
|
[6] |
李偉. 全斷面通道式自動風窗研究與應用. 工礦自動化, 2016, 42(12):15
Li W. Research of automatic passageway type air regulator with full section and its application. Ind Mine Autom, 2016, 42(12): 15
|
[7] |
盧新明. 礦井通風智能化技術研究現狀與發展方向. 煤炭科學技術, 2016, 44(7):47
Lu X M. Study status and development orientation of mine ventilation intelligent technology. Coal Sci Technol, 2016, 44(7): 47
|
[8] |
吳奉亮, 高佳南, 常心坦, 等. 礦井風網雅可比矩陣對稱特性及并行求解模型. 煤炭學報, 2016, 41(6):1454
Wu F L, Gao J N, Chang X T, et al. Symmetry property of Jacobian matrix of mine ventilation network and its parallel calculation model. J China Coal Soc, 2016, 41(6): 1454
|
[9] |
劉劍, 李雪冰, 宋瑩, 等. 無外部擾動的均直巷道風速和風壓測不準機理實驗研究. 煤炭學報, 2016, 41(6):1447
Liu J, Li X B, Song Y, et al. Experimental study on uncertainty mechanism of mine airvelocity and pressure with non-external disturbance. J China Coal Soc, 2016, 41(6): 1447
|
[10] |
劉劍, 郭欣, 鄧立軍, 等. 基于風量特征的礦井通風系統阻變型單故障源診斷. 煤炭學報, 2018, 43(1):143
Liu J, Guo X, Deng L J, et al. Resistance variant single fault source diagnosis of mine ventilation system based on air volume characteristic. J China Coal Soc, 2018, 43(1): 143
|
[11] |
方博, 馬恒. 運用監控數據的礦井通風網絡動態解算及應用. 遼寧工程技術大學學報(自然科學版), 2016, 35(12):1439 doi: 10.11956/j.issn.1008-0562.2016.12.010
Fang B, Ma H. Mine ventilation network application monitoring database and application dynamic solver. J Liaoning Tech Univ Nat Sci, 2016, 35(12): 1439 doi: 10.11956/j.issn.1008-0562.2016.12.010
|
[12] |
李雨成, 李俊橋, 鄧存寶, 等. 基于角聯子網的風量反演風阻病態改良算法. 煤炭學報, 2019, 44(4):1147 doi: 10.13225/j.cnki.jccs.2018.0741
Li Y C, Li J Q, Deng C B, et al. Improved algorithm of air quantity calculating resistance based on diagonal subnetwork. J China Coal Soc, 2019, 44(4): 1147 doi: 10.13225/j.cnki.jccs.2018.0741
|
[13] |
Suvar M C, Lupu C, Arad V, et al. Computerized simulation of mine ventilation networks for sustainable decision making process. Environ Eng Manag J, 2014, 13(6): 1445 doi: 10.30638/eemj.2014.159
|
[14] |
Widiatmojo A, Sasaki K, Sugai Y, et al. Assessment of air dispersion characteristic in underground mine ventilation: Field measurement and numerical evaluation. Process Saf Environ Prot, 2015, 93: 173 doi: 10.1016/j.psep.2014.04.001
|
[15] |
Nel A J H, Arndt D C, Vosloo J C, et al. Achieving energy efficiency with medium voltage variable speed drives for ventilation-on-demand in South African mines. J Clean Prod, 2019, 232: 379 doi: 10.1016/j.jclepro.2019.05.376
|
[16] |
Chatterjee A, Zhang L J, Xia X H. Optimization of mine ventilation fan speeds according to ventilation on demand and time of use tariff. Appl Energy, 2015, 146: 65 doi: 10.1016/j.apenergy.2015.01.134
|
[17] |
張卅卅, 任高峰, 張聰瑞, 等. 深部開采礦井通風智能感知及風機遠程集中安全監控系統. 武漢理工大學學報, 2015, 37(1):104
Zhang S S, Ren G F, Zhang C R, et al. Intellisense and remote centralized security monitoring system for the ventilation system in deep mining. J Wuhan Univ Technol, 2015, 37(1): 104
|
[18] |
陳贊成, 楊鵬, 呂文生, 等. 高寒礦井穿脈巷道掘進炮煙擴散規律的數值模擬. 北京科技大學學報, 2011, 33(5):521 doi: 10.13374/j.issn1001-053x.2011.05.003
Chen Z C, Yang P, Lü W S, et al. Numerical simulation on the diffusion law of blasting fume during roadway tunneling across a vein in an alpine mine. J Univ Sci Technol Beijing, 2011, 33(5): 521 doi: 10.13374/j.issn1001-053x.2011.05.003
|
[19] |
郭對明, 李國清, 胡乃聯, 等. 基于文本挖掘的礦山安全隱患大數據分析與可視化. 工程科學學報, 2022, 44(3):328 doi: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203002
Guo D M, Li G Q, Hu N L, et al. Big data analysis and visualization of potential hazardous risks of the mine based on text mining. Chin J Eng, 2022, 44(3): 328 doi: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203002
|
[20] |
張慶華. 我國煤礦通風技術與裝備發展現狀及展望. 煤炭科學技術, 2016, 44(6):146 doi: 10.13199/j.cnki.cst.2016.06.024
Zhang Q H. Development and prospect of mine ventilation technology and equipment. Coal Sci Technol, 2016, 44(6): 146 doi: 10.13199/j.cnki.cst.2016.06.024
|
[21] |
王國法, 王虹, 任懷偉, 等. 智慧煤礦2025情景目標和發展路徑. 煤炭學報, 2018, 43(2):295 doi: 10.13225/j.cnki.jccs.2018.0152
Wang G F, Wang H, Ren H W, et al. 2025 scenarios and development path of intelligent coal mine. J China Coal Soc, 2018, 43(2): 295 doi: 10.13225/j.cnki.jccs.2018.0152
|
[22] |
郭奇峰, 蔡美峰, 吳星輝, 等. 面向2035年的金屬礦深部多場智能開采發展戰略. 工程科學學報, 2022, 44(4):476 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204002
Guo Q F, Cai M F, Wu X H, et al. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035. Chin J Eng, 2022, 44(4): 476 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204002
|
[23] |
Chen K Y, Si J H, Zhou F B, et al. Optimization of air quantity regulation in mine ventilation networks using the improved differential evolution algorithm and critical path method. Int J Min Sci Technol, 2015, 25(1): 79 doi: 10.1016/j.ijmst.2014.11.001
|
[24] |
李翠平, 胡磊, 侯定勇, 等. 基于元胞自動機的井巷火災仿真. 北京科技大學學報, 2013, 35(12):1546 doi: 10.13374/j.issn1001-053x.2013.12.006
Li C P, Hu L, Hou D Y, et al. Cellular automata-based tunnel fire simulation. J Univ Sci Technol Beijing, 2013, 35(12): 1546 doi: 10.13374/j.issn1001-053x.2013.12.006
|
[25] |
司俊鴻, 陳開巖. 基于Tikhonov正則化的礦井通風網絡測風求阻法. 煤炭學報, 2012, 37(6):994 doi: 10.13225/j.cnki.jccs.2012.06.025
Si J H, Chen K Y. Measuring airflow & evaluating resistance model of the mine ventilation network based on Tikhonov regularization. J China Coal Soc, 2012, 37(6): 994 doi: 10.13225/j.cnki.jccs.2012.06.025
|
[26] |
周福寶, 魏連江, 夏同強, 等. 礦井智能通風原理、關鍵技術及其初步實現. 煤炭學報, 2020, 45(6):2225 doi: 10.13225/j.cnki.jccs.zn20.0338
Zhou F B, Wei L J, Xia T Q, et al. Principle, key technology and preliminary realization of mine intelligent ventilation. J China Coal Soc, 2020, 45(6): 2225 doi: 10.13225/j.cnki.jccs.zn20.0338
|
[27] |
Wang K, Jiang S G, Ma X P, et al. Abnormal gas emission in coal mines and a method for its dilution using ventilator control. J Nat Gas Sci Eng, 2016, 33: 355 doi: 10.1016/j.jngse.2016.05.021
|