<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 6
May  2023
Turn off MathJax
Article Contents
XU Lüe-wei, HE Bing-xuan, XU Guo-zuan, LEI Xin, HU Hao-dong, LIANG Yong, LIU De-gang. Study of equilibrium dissolution of WO3–CaSO4 in HCl–Na2SO4 solution[J]. Chinese Journal of Engineering, 2023, 45(6): 883-889. doi: 10.13374/j.issn2095-9389.2022.03.25.001
Citation: XU Lüe-wei, HE Bing-xuan, XU Guo-zuan, LEI Xin, HU Hao-dong, LIANG Yong, LIU De-gang. Study of equilibrium dissolution of WO3–CaSO4 in HCl–Na2SO4 solution[J]. Chinese Journal of Engineering, 2023, 45(6): 883-889. doi: 10.13374/j.issn2095-9389.2022.03.25.001

Study of equilibrium dissolution of WO3–CaSO4 in HCl–Na2SO4 solution

doi: 10.13374/j.issn2095-9389.2022.03.25.001
More Information
  • Corresponding author: E-mail: 245572722@qq.com
  • Received Date: 2022-03-25
    Available Online: 2022-08-23
  • Publish Date: 2023-05-31
  • There are numerous issues in the mainstream process of alkali decomposition of tungsten ores, such as large water consumption, large amounts of wastewater, and high processing costs, which add the dual pressure of economic and environmental protection on smelting enterprises and prevent them from meeting the industry’s development needs. As a result of a series of studies on scheelite roasting and decomposition processes, our team innovatively proposed the use of acid roasting to develop the process of sulfate decomposition of scheelite so that CaWO4 in the scheelite could be transformed directly into WO3. In addition to WO3, the roasting products contained soluble Na2SO4 and insoluble CaSO4. Because CaSO4 can be dissolved in hydrochloric acid, it can be separated from WO3 via hydrochloric acid leaching to further enrich WO3, resulting in a higher-grade material for subsequent procedures. In the presence of Na2SO4, its effect on the dissolution of WO3 or CaSO4 in hydrochloric acid will directly determine the separation effect of calcium and tungsten in the roasting products. Thus, using pure substances such as WO3, CaSO4, and Na2SO4 as raw materials, the dissolution behaviors of WO3, CaSO4, and WO3–CaSO4 in HCl–Na2SO4 solution were investigated separately via isothermal equilibrium dissolution to investigate the effects of hydrochloric acid concentration, sodium sulfate concentration, dissolution time, and dissolution temperature on the solubility of WO3, CaSO4, and WO3–CasO4 in HCl–Na2SO4 solution. The analysis shows that WO3 and CaSO4 have very different solubilities in hydrochloric acid. The solubility of CaSO4 in hydrochloric acid increases with temperature and hydrochloric acid concentration when the dissolution time is 0.5–2.5 h, the hydrochloric acid concentration is 1–5 mol·L?1, the molar ratio of HCl and Na2SO4 is 1∶2–2∶1, and the dissolution temperature is 40–80 ℃. The solubility of calcium sulfate in hydrochloric acid increases with the increase in temperature and hydrochloric acid concentration. When the temperature is 80 ℃ and the concentration of hydrochloric acid is 3 mol·L?1, the solubility of calcium sulfate in hydrochloric acid reaches a peak of 55 g·L?1. Due to the same ion effect, Na2SO4 can significantly reduce the solubility of CaSO4 and narrow the solubility difference between CaSO4 and WO3 in hydrochloric acid. CaSO4 has the highest solubility in HCl–Na2SO4 solution at 17.04 g·L?1. The dissolved WO3, whose solubility is maintained at 0.3–3 g·L?1, can be effectively recovered by using the current mature low-tungsten recovery process. Therefore, when CaSO4 and WO3 coexist in hydrochloric acid, increasing the concentration of hydrochloric acid and the dissolution temperature while decreasing the concentration of Na2SO4 can increase the solubility difference between them and achieve separation.

     

  • loading
  • [1]
    趙中偉, 李江濤, 陳星宇, 等. 我國白鎢礦鎢冶煉技術現狀與發展. 有色金屬科學與工程, 2013, 4(5):11

    Zhao Z W, Li J T, Chen X Y, et al. Technology status and development of scheelite metallurgy in China. Nonferrous Met Sci Eng, 2013, 4(5): 11
    [2]
    趙中偉, 孫豐龍, 楊金洪, 等. 我國鎢資源、技術和產業發展現狀與展望. 中國有色金屬學報, 2019, 29(9):1902 doi: 10.19476/j.ysxb.1004.0609.2019.09.07

    Zhao Z W, Sun F L, Yang J H, et al. Status and prospect for tungsten resources, technologies and industrial development in China. Chin J Nonferrous Met, 2019, 29(9): 1902 doi: 10.19476/j.ysxb.1004.0609.2019.09.07
    [3]
    Lassner E, Schubert W D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. New York: Kluwer Academic/Plenum Publishers, 1999
    [4]
    范景蓮, 劉濤, 成會朝. 中國鎢基合金的進步與發展. 中國鎢業, 2009, 24(5):99

    Fan J L, Liu T, Cheng U. Progress and development of tungsten-based alloys in China. China Tungsten Ind, 2009, 24(5): 99
    [5]
    唐萍芝, 王壽成, 王京. 全球鎢消費歷史分析及需求預測. 中國國土資源經濟, 2021, 34(1):55 doi: 10.19676/j.cnki.1672-6995.000557

    Tang P Z, Wang S C, Wang J. Historical analysis and demand forecast of global tungsten consumption. Nat Resour Econ China, 2021, 34(1): 55 doi: 10.19676/j.cnki.1672-6995.000557
    [6]
    中華人民共和國自然資源部. 中國礦產資源報告[R/OL]. 網站公開(2021-11-5)[2022-3-25]. https://www.mnr.gov.cn/sj/sjfw/kc_19263/zgkczybg/202111/t20211105_2701985.html

    Ministry of Natural Resources, People’s Republic of China. China mineral resources 2020 [R/OL]. Website Online (2021-11-5) [2022-3-25]. https://www.mnr.gov.cn/sj/sjfw/kc_19263/zgkczybg/202111/t20211105_2701985.html
    [7]
    王明燕, 賈木欣, 肖儀武, 等. 中國鎢礦資源現狀及可持續發展對策. 有色金屬工程, 2014, 4(2):76 doi: 10.3969/j.issn.2095-1744.2014.02.018

    Wang M Y, Jia M X, Xiao Y W, et al. Present situation and sustainable development countermeasures of tungsten resources in China. Nonferrous Met Eng, 2014, 4(2): 76 doi: 10.3969/j.issn.2095-1744.2014.02.018
    [8]
    申建秀. 我國黑鎢資源的枯竭及其對策(我國鎢資源優勢的危機及其對策). 硬質合金, 1999, 16(2):126

    Shen J X. The exhaustion of wolframite resource of our country and its countermeasure. Cem Carbide, 1999, 16(2): 126
    [9]
    Zhao Z W, Yang M F, He L H, et al. Preparation of Na specific absorbent and application of sodium removal from ammonium tungstate solution. Trans Nonferrous Met Soc China, 2014, 24(3): 854 doi: 10.1016/S1003-6326(14)63135-6
    [10]
    何利華, 劉旭恒, 趙中偉, 等. 鎢礦物原料堿分解的理論與工藝. 中國鎢業, 2012, 27(2):22

    He L H, Liu X H, Zhao Z W, et al. Theory and technologies on the alkali decomposition of tungsten ores. China Tungsten Ind, 2012, 27(2): 22
    [11]
    中華人民共和國生態環境部. 國家危險廢物名錄[Z/OL]. 規章公開(2020-11-25) [2022-3-25]. https://www.mee.gov.cn/gzk/gz/202112/t20211213_963867.shtml

    Ministry of Ecology and Environment of the People's Republic of China. National catalogue of hazardous waste [Z/OL]. Ruler Online (2020-11-25) [2022-3-25]. https://www.mee.gov.cn/gzk/gz/202112/t20211213_963867.shtml
    [12]
    國家稅務總局. 中華人民共和國環境保護稅法[Z/OL]. 規章公開 (2017-12-25) [2022-3-25]. http://www.chinatax.gov.cn/n810341/n810755/c3002759/content.html

    State Taxation Administration, People’s Republic of China. Environmental protection tax law of the People’s Republic of China [Z/OL]. Ruler Online (2017-12-25) [2022-3-25]. http://www.chinatax.gov.cn/n810341/n810755/c3002759/content.html
    [13]
    楊金洪. 我國鎢礦物原料NaOH分解的理論與工藝研究進展. 中國鎢業, 2009, 24(3):28 doi: 10.3969/j.issn.1009-0622.2009.03.008

    Yang J H. The theoretic and technology progresses of caustic decomposition of tungsten concentrates in China. China Tungsten Ind, 2009, 24(3): 28 doi: 10.3969/j.issn.1009-0622.2009.03.008
    [14]
    陳升, 戴林明, 熊慶, 等. 淺析白鎢分解的理論與工藝. 價值工程, 2019, 38(26):148 doi: 10.14018/j.cnki.cn13-1085/n.2019.26.060

    Chen S, Dai L M, Xiong Q, et al. Analysis of the theory and technology of scheelite leaching. Value Eng, 2019, 38(26): 148 doi: 10.14018/j.cnki.cn13-1085/n.2019.26.060
    [15]
    張貴清, 關文娟, 張啟修, 等. 從鎢礦蘇打浸出液中直接萃取鎢的連續運轉試驗. 中國鎢業, 2009, 24(5):49 doi: 10.3969/j.issn.1009-0622.2009.05.011

    Zhang G Q, Guan W J, Zhang Q X, et al. Continuous-running experiment for direct solvent extraction of tungsten from autoclave-soda leaching liquor of scheeite. China Tungsten Ind, 2009, 24(5): 49 doi: 10.3969/j.issn.1009-0622.2009.05.011
    [16]
    萬林生, 徐國鉆, 嚴永海, 等. 中國鎢冶煉工藝發展歷程及技術進步. 中國鎢業, 2009, 24(5):63 doi: 10.3969/j.issn.1009-0622.2009.05.015

    Wan L S, Xu G Z, Yan Y H, et al. The development history and technology progress in China's tungsten metallurgy. China Tungsten Ind, 2009, 24(5): 63 doi: 10.3969/j.issn.1009-0622.2009.05.015
    [17]
    萬林生, 趙立夫, 黃澤輝, 等. 一種銨鹽分解白鎢礦的方法: 中國專利, CN102154547A. 2013-01-16

    Wan L S, Zhao L F, Huang Z H, et al. A Method of Ammonium Salt Decomposition of Scheelite: China Patent, CN102154547A. 2013-1-16
    [18]
    何利華, 趙中偉, 楊金洪. 新一代綠色鎢冶金工藝——白鎢硫磷混酸協同分解技術. 中國鎢業, 2017, 32(3):49

    He L H, Zhao Z W, Yang J H. A new green process for tungsten metallurgy-synergistic decomposition of scheelite by sulfuric-phosphorous mixed acid. China Tungsten Ind, 2017, 32(3): 49
    [19]
    郭福亮, 陳星宇, 趙中偉, 等. 硫磷混酸分解白鎢礦過程中伴生稀土的行為. 中國有色金屬學報, 2018, 28(2):387 doi: 10.19476/j.ysxb.1004.0609.2018.02.21

    Guo F L, Chen X Y, Zhao Z W, et al. Behavior of accompanying rare earth during process of decomposing scheelite by sulfuric-phosphoric mixed acid. Chin J Nonferrous Met, 2018, 28(2): 387 doi: 10.19476/j.ysxb.1004.0609.2018.02.21
    [20]
    楊劍波, 車文芳, 候凱. 電加熱回轉窯在白鎢精礦焙燒脫浮中的應用研究. 中國鎢業, 2021, 36(1):22 doi: 10.3969/j.issn.1009-0622.2021.01.004

    Yang J B, Che W F, Hou K. Application of electric heating rotary kiln in roasting and floatation of scheelite concentrate. China Tungsten Ind, 2021, 36(1): 22 doi: 10.3969/j.issn.1009-0622.2021.01.004
    [21]
    楊幼明, 萬林生, 張子巖. 堿性條件下磷酸鹽分解白鎢試驗研究. 中國鎢業, 2006, 21(5):32

    Yang Y M, Wan L S, Zhang Z Y. Decomposition of scheelite using phosphate on alkali condition. China Tungsten Ind, 2006, 21(5): 32
    [22]
    梁鑫. 磷酸鈉焙燒分解白鎢及過剩磷酸鈉循環利用研究[學位論文]. 贛州: 江西理工大學, 2018

    Liang X. Study on Decomposition of Scheelite by Sodium Phosphate Roasting and Recycling of Excess Sodium Phosphate [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2018
    [23]
    尹忠, 趙曉東. 硫酸鈣在鹽酸和氯化鈉水溶液中的溶解度. 油田化學, 1994, 11(4):345 doi: 10.19346/j.cnki.1000-4092.1994.04.017

    Yin Z, Zhao X D. Solubilities of calcium sulfate in hydrochloric acid and aqueous sodiium chloride solution. Oilfield Chem, 1994, 11(4): 345 doi: 10.19346/j.cnki.1000-4092.1994.04.017
    [24]
    鄭紹聰, 余強, 謝剛, 等. 用鹽酸溶解工業磷石膏重結晶法制備硫酸鈣晶須. 濕法冶金, 2016, 35(6):488 doi: 10.13355/j.cnki.sfyj.2016.06.008

    Zheng S C, Yu Q, Xie G, et al. Preparating of calcium sulphate whisker using phosphogypsum by recrystallization. Hydrometall China, 2016, 35(6): 488 doi: 10.13355/j.cnki.sfyj.2016.06.008
    [25]
    張欣, 梁勇, 徐略渭, 等. 一種鹽酸高效分解硫酸鈣的方法: 中國專利, CN113957273A. 2022-01-21

    Zhang X, Liang Y, Xu L W, et al. A Method for Efficient Decomposition of Calcium Sulfate by Hydrochloric Acid: China Patent, CN113957273A. 2022-01-21
    [26]
    張永明, 馬黎春, 劉成林, 等. 50 ℃時RbCl-CsCl-H2O三元體系等溫平衡研究. 無機鹽工業, 2014, 46(1):21

    Zhang Y M, Ma L C, Liu C L, et al. Research on isothermal equilibrium of ternary system of RbCl-CsCl-H2O at 50 ℃. Inorg Chem Ind, 2014, 46(1): 21
    [27]
    明鍵偉, 徐文芳, 曾德文. 三元體系LiCl-LiNO3-H2O 273.15K和323. 15K等溫溶解度的測定. 無機化學學報, 2007, 23(5):883

    Ming J W, Xu W F, Zeng D W. Isothermal solubility of the ternary system LiCl-LiNO3-H2O at 273.15 K and 323. 15 K. Chin J Inorg Chem, 2007, 23(5): 883
    [28]
    王也如. EDTA滴定鈣鎂離子時鐵(Ⅲ)離子的干擾及其排除. 上海應用技術學院學報(自然科學版), 2003, 3(4):231

    Wang Y R. The interruption and its elimination of iron ion in EDTA titration of calcium and magnesium ion. J Shanghai Inst Technol, 2003, 3(4): 231
    [29]
    王瑞珍, 朱戈莎, 楊繼東. EDTA滴定法測定低氯離子燒結助劑中鈣離子含量. 漣鋼科技與管理, 2013(2):41

    Wang R Z, Zhu G S, Yang J D. EDTA titration method for determination of calcium ion content in low chloride ion sintering additives. Technol Manage LY Steel, 2013(2): 41
    [30]
    中國國家標準化管理委員會. GB/T 6150.1—2008鎢精礦化學分析方法 三氧化鎢量的測定 鎢酸銨灼燒重量法. 北京: 中國標準出版社, 2008

    Standardization Administration of the People's Republic of China. GB/T 6150.1—2008 Methods for Chemical Analysis of Tungsten Concentrates - Determination of Tungsten Trioxide Content - The Ammonium Tungstate Igniting Gravimetric Method. Beijing: Standards Press of China, 2008
    [31]
    葉新民. 重量法測定高錫鎢精礦中的鎢. 化學分析計量, 2016, 25(1):67 doi: 10.3969/j.issn.1008-6145.2016.01.019

    Ye X M. Determination of tungsten in tungsten concentrate with high stannum by gravimetric method. Chem Anal Meterage, 2016, 25(1): 67 doi: 10.3969/j.issn.1008-6145.2016.01.019
    [32]
    朱國斌, 聶淑蘭, 吳麗玉. 重量法測定鎢銅合金中鎢的質量分數. 鐵合金, 2013, 44(6):45 doi: 10.3969/j.issn.1001-1943.2013.06.014

    Zhu G B, Nie S L, Wu L Y. Determinating the tungsten mass fraction in tungsten and copper alloy using gravimetric method. Ferro-alloys, 2013, 44(6): 45 doi: 10.3969/j.issn.1001-1943.2013.06.014
    [33]
    張煦. 鎢精礦、焙燒鉬精礦內控標樣的研制和定值方法的研究[學位論文]. 北京: 北京有色金屬研究總院, 2017

    Zhang X. Study on the Preparation and Certifying Value Method of Internal Control Reference Material for Tungsten Concentrate and Roasted Molybdenum Concentrate [Dissertation]. Beijing: Beijing General Research Institute for Nonferrous Metals, 2017
    [34]
    劉仕忠, 朱家驊, 周加貝, 等. (NH4)2SO4-H2O體系中CaSO4·2H2O溶解度的突變現象. 磷肥與復肥, 2017, 32(4):5 doi: 10.3969/j.issn.1007-6220.2017.04.003

    Liu S Z, Zhu J H, Zhou J B, et al. Saltation phenomenon of CaSO4·2H2O solubility in (NH4)2SO4-H2O system. Phosphate &Compd Fertil, 2017, 32(4): 5 doi: 10.3969/j.issn.1007-6220.2017.04.003
    [35]
    劉紅召, 曹耀華, 王威, 等. 離子交換法從鎢鉬氧化礦浸出渣洗水中回收鉬、鎢試驗研究. 濕法冶金, 2015, 34(1):35 doi: 10.13355/j.cnki.sfyj.2015.01.10

    Liu H Z, Cao Y H, Wang W, et al. Recovery of molybdenum and tungsten from washwater of leaching residue of powellite ore by ion exchange. Hydrometall China, 2015, 34(1): 35 doi: 10.13355/j.cnki.sfyj.2015.01.10
    [36]
    徐曉玲, 肖連生, 張啟修. 離子交換法回收白鎢精礦酸分解母液與洗水混合液中的鎢. 稀有金屬, 2001, 25(5):386 doi: 10.3969/j.issn.0258-7076.2001.05.016

    Xu X L, Xiao L S, Zhang Q X. Recovery of tungsten from mixture solution of acid digestion mother liquid and washing water of scheelite concentrate by ion exchange method. Chin J Rare Met, 2001, 25(5): 386 doi: 10.3969/j.issn.0258-7076.2001.05.016
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)

    Article views (521) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164