<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
LING Hai-tao, WU Jin-yuan, CHANG Li-zhong, YANG Shu-feng, QIU Sheng-tao. Effect of reoxidation on inclusions in Al-killed stainless steel during the casting start process[J]. Chinese Journal of Engineering, 2023, 45(5): 737-746. doi: 10.13374/j.issn2095-9389.2022.03.22.002
Citation: LING Hai-tao, WU Jin-yuan, CHANG Li-zhong, YANG Shu-feng, QIU Sheng-tao. Effect of reoxidation on inclusions in Al-killed stainless steel during the casting start process[J]. Chinese Journal of Engineering, 2023, 45(5): 737-746. doi: 10.13374/j.issn2095-9389.2022.03.22.002

Effect of reoxidation on inclusions in Al-killed stainless steel during the casting start process

doi: 10.13374/j.issn2095-9389.2022.03.22.002
More Information
  • Corresponding author: E-mail: linghaitao@ahut.edu.cn
  • Received Date: 2022-03-22
    Available Online: 2022-06-14
  • Publish Date: 2023-05-01
  • Stainless steels are widely used for corrosion resistance and as construction materials. The existence of harmful inclusions probably deteriorates corrosion resistance and easily causes nozzle clogging, surface defects, and the occurrence of cracks. Reoxidation during the casting start process significantly affects the cleanliness of molten steel, which may result in the downgrading or discarding of the steel. The production route of Al-killed stainless steel in this work is “EAF → AOD → LF → Calcium treatment → Continuous casting of round billet.” At LF departure, steel samples were taken at different moments during the casting start process to investigate the effect of reoxidation on the cleanliness of molten steel and the evolution of inclusions in the steel. It aims to achieve effective control of inclusions in the steel. The morphology, composition, amount, and size of inclusions in Al-killed stainless steel were studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), as well as automated SEM/EDS inclusion analysis (ASPEX). The effects of the oxygen content from reoxidation and the temperature decrease during solidification on the inclusion composition were calculated by the thermodynamic software FactSage 7.2. The evolution behavior and mechanism of inclusions during the casting start process of Al-killed stainless steel were analyzed and discussed. The findings showed that the total oxygen and nitrogen contents, as well as the number density of inclusions in the steel during the casting start process, indicated a similar change trend. They were increased to 7.4×10?5, 0.0674%, and 17.1 mm?2, respectively, at casting 20 min, and then gradually decreased. Inclusions in the steel have been well modified by calcium treatment at LF departure, and its composition was primarily CaO?Al2O3?SiO2?MgO. The effects of calcium treatment were mitigated by reoxidation during the casting start process. Inclusions in the round billet were transformed to MnO?Al2O3?SiO2?CaO at casting 20 min. When the pouring time was 60 min, the cleanliness of the molten steel almost reached a steady state during continuous casting. The contents of total oxygen and nitrogen with the number density of inclusions in the steel were 3.2×10?5, 0.0628%, and 7.1 mm?2, respectively, and inclusions were transformed back to CaO?Al2O3?SiO2?MgO. Furthermore, reoxidation increases the oxygen content in molten steel and promotes the formation of MnO?Al2O3?SiO2?CaO inclusions. Collision and coalescence among inclusions produce large-sized CaO?Al2O3?SiO2?MnO?(MgO) inclusions in the steel. The decrease of the temperature during solidification promotes the precipitation of the MgO?Al2O3 spinel phase and CaO?2MgO?8Al2O3 phase. As a result, the Al2O3 content in inclusions increases.

     

  • loading
  • [1]
    Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ Int, 2010, 50(10): 1333 doi: 10.2355/isijinternational.50.1333
    [2]
    Kim W Y, Nam G J, Kim S Y. Evolution of non-metallic inclusions in Al-killed stainless steelmaking. Metall Mater Trans B, 2021, 52(3): 1508 doi: 10.1007/s11663-021-02119-4
    [3]
    華承健, 王敏, 張孟昀, 等. 浸入式水口內壁特征對邊界層流場結構和氧化鋁夾雜物運動行為的影響. 工程科學學報, 2021, 43(7):925

    Hua C J, Wang M, Zhang M Y, et al. Effect of submerged entry nozzle wall surface morphologies on boundary layer structure and alumina inclusions transport. Chin J Eng, 2021, 43(7): 925
    [4]
    王啟明, 成國光. 含Ti不銹鋼冶金工藝進展. 工程科學學報, 2021, 43(11):1447

    Wang Q M, Cheng G G. Metallurgy development of Ti-stabilized stainless steel. Chin J Eng, 2021, 43(11): 1447
    [5]
    Park J H, Lee S B, Kim D S. Inclusion control of ferritic stainless steel by aluminum deoxidation and calcium treatment. Metall Mater Trans B, 2005, 36(1): 67 doi: 10.1007/s11663-005-0007-2
    [6]
    Ren Y, Zhang L F, Fang W, et al. Effect of slag composition on inclusions in Si-deoxidized 18Cr–8Ni stainless steels. Metall Mater Trans B, 2016, 47(2): 1024 doi: 10.1007/s11663-015-0554-0
    [7]
    張樂辰, 包燕平, 王敏, 等. TP347H精煉渣二次氧化控制及夾雜物變性處理. 工程科學學報, 2016, 38(Suppl 1):1

    Zhang L C, Bao Y P, Wang M, et al. Reoxidation control of refining slag and inclusion modification in TP347H stainless steel. Chin J Eng, 2016, 38(Suppl 1): 1
    [8]
    Guo J, Han S W, Chen X R, et al. Control of non-metallic inclusion plasticity and steel cleanliness for ultrathin 18 pct Cr-8 pct Ni stainless steel strip. Metall Mater Trans B, 2020, 51(4): 1813 doi: 10.1007/s11663-020-01862-4
    [9]
    張一民, 孫彥輝, 白雪峰, 等. 不銹鋼中夾雜物三維形貌及其熱力學計算. 工程科學學報, 2020, 42(Suppl 1):14

    Zhang Y M, Sun Y H, Bai X F, et al. Three-dimensional morphology and thermodynamic calculation of inclusions in stainless steel. Chin J Eng, 2020, 42(Suppl 1): 14
    [10]
    Okuyama G, Yamaguchi K, Takeuchi S, et al. Effect of slag composition on the kinetics of formation of Al2O3–MgO inclusions in aluminum killed ferritic stainless steel. ISIJ Int, 2000, 40(2): 121 doi: 10.2355/isijinternational.40.121
    [11]
    Todoroki H, Mizuno K. Effect of silica in slag on inclusion compositions in 304 stainless steel deoxidized with aluminum. ISIJ Int, 2004, 44(8): 1350 doi: 10.2355/isijinternational.44.1350
    [12]
    李璟宇, 成國光, 李六一, 等. 202不銹鋼中非金屬夾雜物的形成機理. 工程科學學報, 2019, 41(12):1567

    Li J Y, Cheng G G, Li L Y, et al. Formation mechanism of non-metallic inclusions in 202 stainless steel. Chin J Eng, 2019, 41(12): 1567
    [13]
    任英, 張立峰, 楊文. 不銹鋼中夾雜物控制綜述. 煉鋼, 2014, 30(1):71 doi: 10.3969/j.issn.1002-1043.2014.01.018

    Ren Y, Zhang L F, Yang W. Review of control of inclusions in stainless steel. Steelmaking, 2014, 30(1): 71 doi: 10.3969/j.issn.1002-1043.2014.01.018
    [14]
    Li S S, Zhang L F, Ren Y, et al. Transient behavior of inclusions during reoxidation of Si-killed stainless steels in continuous casting tundish. ISIJ Int, 2016, 56(4): 584 doi: 10.2355/isijinternational.ISIJINT-2015-694
    [15]
    徐海坤, 黃慶周, 謝明耀, 等. 中間包二次氧化對304不銹鋼潔凈度的影響. 中國冶金, 2018, 28(Suppl 1):76 doi: 10.13228/j.boyuan.issn1006-9356.2018s014

    Xu H K, Huang Q Z, Xie M Y, et al. Effect of reoxidation on cleanliness of 304 stainless steel in tundish. China Metall, 2018, 28(Suppl 1): 76 doi: 10.13228/j.boyuan.issn1006-9356.2018s014
    [16]
    付邦豪, 陳超, 成國光, 等. 430不銹鋼冶煉過程的夾雜物. 鋼鐵, 2012, 47(1):40 doi: 10.13228/j.boyuan.issn0449-749x.2012.01.017

    Fu B H, Chen C, Cheng G G, et al. Inclusions in 430 stainless steelmaking during AOD-LF-CC process. Iron Steel, 2012, 47(1): 40 doi: 10.13228/j.boyuan.issn0449-749x.2012.01.017
    [17]
    Goto H, Miyazawa K I. Reoxidation behavior of molten steel in non-killed and Al-killed steels. ISIJ Int, 1998, 38(3): 256 doi: 10.2355/isijinternational.38.256
    [18]
    Zhang L F, Thomas B G. State of the art in evaluation and control of steel cleanliness. ISIJ Int, 2003, 43(3): 271 doi: 10.2355/isijinternational.43.271
    [19]
    王新華. 高品質冷軋薄板鋼中非金屬夾雜物控制技術. 鋼鐵, 2013, 48(9):1 doi: 10.13228/j.boyuan.issn0449-749x.2013.09.004

    Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1 doi: 10.13228/j.boyuan.issn0449-749x.2013.09.004
    [20]
    Yan P C, van Ende M A, Zinngrebe E, et al. Interaction between steel and distinct gunning materials in the tundish. ISIJ Int, 2014, 54(11): 2551 doi: 10.2355/isijinternational.54.2551
    [21]
    Kim T S, Chung Y, Holappa L, et al. Effect of rice husk ash insulation powder on the reoxidation behavior of molten steel in continuous casting tundish. Metall Mater Trans B, 2017, 48(3): 1736 doi: 10.1007/s11663-017-0971-3
    [22]
    Wang F, Liu D X, Liu W, et al. Reoxidation of Al-killed steel by Cr2O3 from tundish cover flux. Metals, 2019, 9(5): 554 doi: 10.3390/met9050554
    [23]
    朱坦華, 周秋月, 任英, 等. 二次氧化過程IF鋼中間包中夾雜物演變行為. 鋼鐵, 2020, 55(3):35 doi: 10.13228/j.boyuan.issn0449-749x.20190242

    Zhu T H, Zhou Q Y, Ren Y, et al. Inclusion evolution in IF steel during tundish reoxidation. Iron Steel, 2020, 55(3): 35 doi: 10.13228/j.boyuan.issn0449-749x.20190242
    [24]
    Yang G W, Wang X H, Huang F X, et al. Influence of reoxidation in tundish on inclusion for Ca-treated Al-killed steel. Steel Res Int, 2014, 85(5): 784 doi: 10.1002/srin.201300243
    [25]
    許苗苗, 尚正鴻, 凌海濤, 等. 316L不銹鋼精煉過程中夾雜物成分演變. 煉鋼, 2021, 37(2):16

    Xu M M, Shang Z H, Ling H T, et al. Composition evolution of inclusions in 316L stainless steel refining process. Steelmaking, 2021, 37(2): 16
    [26]
    Jiang M, Wang X H, Chen B, et al. Laboratory study on evolution mechanisms of non-metallic inclusions in high strength alloyed steel refined by high basicity slag. ISIJ Int, 2010, 50(1): 95 doi: 10.2355/isijinternational.50.95
    [27]
    Yang S F, Wang Q Q, Zhang L F, et al. Formation and modification of MgO·Al2O3-based inclusions in alloy steels. Metall Mater Trans B, 2012, 43(4): 731 doi: 10.1007/s11663-012-9663-1
    [28]
    Kim J W, Kim S K, Kim D S, et al. Formation mechanism of Ca?Si?Al?Mg?Ti?O inclusions in type 304 stainless steel. ISIJ Int, 1996, 36(Suppl 1): S140
    [29]
    Yin X, Sun Y H, Yang Y D, et al. Inclusion evolution during refining and continuous casting of 316L stainless steel. Ironmak Steelmak, 2016, 43(7): 533 doi: 10.1080/03019233.2015.1125599
    [30]
    Li J Y, Cheng G G, Li L Y, et al. The formation mechanism of Mn?Al?O inclusions in Fe?Cr?Mn stainless steel during continuous casting. Steel Res Int, 2018, 89(5): 1700461 doi: 10.1002/srin.201700461
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article views (498) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164