<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
WANG Jin-an, YANG Liu, LI Fei. Topological study of persistent homology on complicated force chain network evolution in granular media[J]. Chinese Journal of Engineering, 2023, 45(5): 728-736. doi: 10.13374/j.issn2095-9389.2022.03.09.002
Citation: WANG Jin-an, YANG Liu, LI Fei. Topological study of persistent homology on complicated force chain network evolution in granular media[J]. Chinese Journal of Engineering, 2023, 45(5): 728-736. doi: 10.13374/j.issn2095-9389.2022.03.09.002

Topological study of persistent homology on complicated force chain network evolution in granular media

doi: 10.13374/j.issn2095-9389.2022.03.09.002
More Information
  • Corresponding author: E-mail: lifei2016@ustb.edu.cn
  • Received Date: 2022-03-09
    Available Online: 2022-05-25
  • Publish Date: 2023-05-01
  • The force chain network is a crucial basis for characterizing the essential features of granular media microscopic mechanics and for studying the mechanical behavior of their macroscopic structures. Due to the complexity and multiformity of the force chain configuration, the topological data analysis (TDA) method provides a simple, effective, and manageable method to quantitatively describe the force network. Based on the theory of persistent homology in TDA, the analysis method of granules from contact network to force network to topological model is established. The two key factors affecting the structure of a force chain network are its connectivity and closure. β0 reflects the number of particle clusters whose normal force is greater than the provided threshold. β1 reflects the number of holes in the force chain cluster. Persistent homology, a mathematical method to calculate the topological features of structures in metric spaces with different resolutions, is applied to the structural analysis of force chain networks. Different from other methods that separately consider force threshold levels, the evolution of a force chain structure at the force threshold level is helpful in understanding the persistence characteristics of geometric structures at various force levels and describing the force chain network completely and deeply. For example, the top coal and overburden force chain evolution in top-coal caving mining is investigated through photoelastic experiments, and the TDA of the top-coal caving force network chain is performed. The research shows that when the particle stress is obtained as the threshold ε of persistent homology analysis in top-coal caving mining, the Betti number in persistent homology analysis can be used to evaluate periodic weighting. In the overlying strata and front of the working face, the curves of β0 are parabolic, of which the peak values under the periodic weighting are higher than that under the initial condition. Furthermore, the difference between them is that the peak values in the overlying strata are located in the range of strong force chains, whereas those in front of the working face are located in the range of sub-strong force chains. The curves of β1 show L-shaped, suggesting that within [0.3, 1], β1 approaches 0; within [0, 0.2], β1 is approximately inversely proportional to ε; and within [0.3, 1], β1 trends to 0. Topological studies of persistent homology provide an effective method for quantitative analysis of the complicated force chain network evolution and macroscopic mechanical behavior in granular media.

     

  • loading
  • [1]
    孫其誠, 劉曉星, 張國華, 等. 密集顆粒物質的介觀結構. 力學進展, 2017, 47(1):263 doi: 10.6052/1000-0992-16-021

    Sun Q C, Liu X X, Zhang G H, et al. The mesoscopic structures of dense granular materials. Adv Mech, 2017, 47(1): 263 doi: 10.6052/1000-0992-16-021
    [2]
    Chen F Z, Yan H. Constitutive model for solid-like, liquid-like, and gas-like phases of granular media and their numerical implementation. Powder Technol, 2021, 390: 369 doi: 10.1016/j.powtec.2021.05.023
    [3]
    張錦旺, 王家臣, 魏煒杰, 等. 塊度級配對散體頂煤流動特性影響的試驗研究. 煤炭學報, 2019, 44(4):985 doi: 10.13225/j.cnki.jccs.2018.1231

    Zhang J W, Wang J C, Wei W J, et al. Experimental investigation on the effect of size distribution on the flow characteristics of loose top coal. J China Coal Soc, 2019, 44(4): 985 doi: 10.13225/j.cnki.jccs.2018.1231
    [4]
    謝廣祥, 范浩, 王磊. 淺埋煤層采場圍巖力鏈演化規律及工程應用. 煤炭學報, 2019, 44(10):2945 doi: 10.13225/j.cnki.jccs.2019.0706

    Xie G X, Fan H, Wang L. Evolution law and engineering application of surrounding rock force chain in shallow coal seam working face. J China Coal Soc, 2019, 44(10): 2945 doi: 10.13225/j.cnki.jccs.2019.0706
    [5]
    韓流, 舒繼森, 尚濤, 等. 排土場散體軟巖重塑物理力學參數研究. 采礦與安全工程學報, 2019, 36(4):820 doi: 10.13545/j.cnki.jmse.2019.04.022

    Han L, Shu J S, Shang T, et al. Experiment study on the physical and mechanical parameters of soft rock remolding in waste dump. J Min Saf Eng, 2019, 36(4): 820 doi: 10.13545/j.cnki.jmse.2019.04.022
    [6]
    Wang J, Yang L, Li F, et al. Force chains in top coal caving mining. Int J Rock Mech Min Sci, 2020, 127: 104218 doi: 10.1016/j.ijrmms.2020.104218
    [7]
    Tordesillas A, Walker D M, Lin Q. Force cycles and force chains. Phys Rev E Stat Nonlinear Soft Matter Phys, 2010, 81(1): 011302 doi: 10.1103/PhysRevE.81.011302
    [8]
    陳慶發, 劉恩江, 秦世康. 多漏斗放礦過程中散體介質力鏈演化特征量化研究. 中南大學學報(自然科學版), 2021, 52(11):4046

    Chen Q F, Liu E J, Qin S K. Quantitative study on evolution characteristics of force chain of granular materials in ore drawing from multiple funnels process. J Central South Univ (Sci Technol), 2021, 52(11): 4046
    [9]
    Li L C, Marteau E, Andrade J E. Capturing the inter-particle force distribution in granular material using LS-DEM. Granul Matter, 2019, 21(3): 43 doi: 10.1007/s10035-019-0893-7
    [10]
    Majmudar T S, Behringer R P. Contact force measurements and stress-induced anisotropy in granular materials. Nature, 2005, 435(7045): 1079 doi: 10.1038/nature03805
    [11]
    孫其誠, 程曉輝, 季順迎, 等. 巖土類顆粒物質宏?細觀力學研究進展. 力學進展, 2011, 41(3):351

    Sun Q C, Cheng X H, Ji S Y, et al. Advances in the micro?macro mechanics of granular soil materials. Adv Mech, 2011, 41(3): 351
    [12]
    Behringer R P, Bi D, Chakraborty B, et al. Statistical properties of granular materials near jamming. J Stat Mech Theory Exp, 2014, 2014(6): P06004 doi: 10.1088/1742-5468/2014/06/P06004
    [13]
    Behringer R P, Daniels K E, Majmudar T S, et al. Fluctuations, correlations and transitions in granular materials: Statistical mechanics for a non-conventional system. Phil Trans R Soc A, 2008, 366(1865): 493 doi: 10.1098/rsta.2007.2106
    [14]
    Vallejo L E, Lobo-Guerrero S, Chik Z. A network of fractal force chains and their effect in granular materials under compression // Fractals in Engineering. London, 2005: 67
    [15]
    王金安, 韓現剛, 任鵬召. 綜放開采頂煤介質狀態演化的特征識別. 煤炭學報, 2016, 41(Suppl 1):1

    Wang J A, Han X G, Ren P Z. Identification of the damage state evolution in top coal caving mining. J China Coal Soc, 2016, 41(Suppl 1): 1
    [16]
    王金安, 韓現剛, 龐偉東, 等. 綜放開采頂煤與覆巖力鏈結構及演化光彈試驗研究. 工程科學學報, 2017, 39(1):13

    Wang J A, Han X G, Pang W D, et al. Photoelastic experimental study on the force chain structure and evolution in top coal and overlaying strata under fully mechanized top coal caving mining. Chin J Eng, 2017, 39(1): 13
    [17]
    Edelsbrunner H, Harer J. Persistent Homology-a Survey [J/OL]. ResearchGate (2008-01) [2022-03-09]. https://www.researchgate.net/\publication/228629885_Persistent_homology-a_survey
    [18]
    Cang Z X, Mu L, Wu K D, et al. A topological approach for protein classification. Comput Math Biophys, 2015, 3(1): 140
    [19]
    Carlsson G. Topology and Data. Bull Amer Math Soc, 2009, 46: 255 doi: 10.1090/S0273-0979-09-01249-X
    [20]
    Kramár M, Goullet A, Kondic L, et al. Quantifying force networks in particulate systems. Phys D Nonlinear Phenom, 2014, 283: 37 doi: 10.1016/j.physd.2014.05.009
    [21]
    王金安, 梁超, 龐偉東. 顆粒體雙軸加載雙向流動力鏈演化光彈試驗研究. 巖土力學, 2016, 37(11):3041 doi: 10.16285/j.rsm.2016.11.001

    Wang J A, Liang C, Pang W D. Photoelastic experiment on force chain evolution of particle aggregate under the conditions of biaxially loading and bilaterally flowing. Rock Soil Mech, 2016, 37(11): 3041 doi: 10.16285/j.rsm.2016.11.001
    [22]
    王金安, 龐偉東, 梁超, 等. 一種雙向顆粒流動光彈實驗裝置: 中國專利, CN204556449U. 2015-08-12

    Wang J A, Pang W D, Liang C, et al. A Photoelastic Experimental Apparatus for Biaxial Loading and Bilateral Flowing of Particles: China Patent, CN204556449U. 2015-08-12
    [23]
    楊柳, 李飛, 王金安, 等. 綜放開采頂煤與覆巖力鏈結構及演化特征. 煤炭學報, 2018, 43(8):2144 doi: 10.13225/j.cnki.jccs.2018.0443

    Yang L, Li F, Wang J N, et al. Structures and evolution characteristics of force chains in top coal and overlying strata under fully mechanized caving mining. J China Coal Soc, 2018, 43(8): 2144 doi: 10.13225/j.cnki.jccs.2018.0443
    [24]
    李飛, 楊柳, 王金安, 等. 混合顆粒體光彈力鏈定量提取方法. 工程科學學報, 2018, 40(3):302

    Li F, Yang L, Wang J A, et al. A quantitative extraction method of force chains for composite particles in a photoelastic experiment. Chin J Eng, 2018, 40(3): 302
    [25]
    Zhao Y Q, Zheng H, Wang D, et al. Particle scale force sensor based on intensity gradient method in granular photoelastic experiments. New J Phys, 2019, 21(2): 023009 doi: 10.1088/1367-2630/ab05e7
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)

    Article views (521) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164