Citation: | JIANG Liang, LIAO Ming-yu, WANG Zhen-dong, ZHU Hong-xin, CUI Heng. Effect of cooling rate on the peritectic transformation of δ-TRIP steel[J]. Chinese Journal of Engineering, 2023, 45(5): 747-754. doi: 10.13374/j.issn2095-9389.2022.03.07.004 |
[1] |
馬鳴圖, 易紅亮, 路洪洲, 等. 論汽車輕量化. 中國工程科學, 2009, 11(9):20 doi: 10.3969/j.issn.1009-1742.2009.09.004
Ma M T, Yi H L, Lu H Z, et al. On the lightweighting of automobile. Eng Sci, 2009, 11(9): 20 doi: 10.3969/j.issn.1009-1742.2009.09.004
|
[2] |
楊旗, 王俊峰, 叢郁, 等. 輕質鋼的研究進展(一)——富Al無間隙原子鋼和鐵素體輕質鋼. 寶鋼技術, 2015(3):1 doi: 10.3969/j.issn.1008-0716.2015.03.001
Yang Q, Wang J F, Cong Y, et al. State of knowledge on lightweight steels(Part Ⅰ)—Al-rich interstitial-free steels and ferritic lightweight steels. Baosteel Technol, 2015(3): 1 doi: 10.3969/j.issn.1008-0716.2015.03.001
|
[3] |
易紅亮, 陳蓬, 王國棟, 等. δ-TRIP鋼的物理與力學冶金. 中國工程科學, 2014, 16(2):18 doi: 10.3969/j.issn.1009-1742.2014.02.002
Yi H L, Chen P, Wang G D, et al. δ-TRIP steel: Physical and mechanical metallurgy. Eng Sci, 2014, 16(2): 18 doi: 10.3969/j.issn.1009-1742.2014.02.002
|
[4] |
Chatterjee S, Murugananth M, Bhadeshia H K D H. δTRIP steel. Mater Sci Technol, 2007, 23(7): 819 doi: 10.1179/174328407X179746
|
[5] |
Xie L, Huang T L, Wang Y H, et al. Deformation induced martensitic transformation and its initial microstructure dependence in a high alloyed duplex stainless steel. Steel Res Int, 2017, 88(12): n/a
|
[6] |
Jamei F, Mirzadeh H, Zamani M. Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel. Mater Sci Eng A, 2019, 750: 125 doi: 10.1016/j.msea.2019.02.052
|
[7] |
梁江濤, 趙征志, 劉錕, 等. 1300 MPa級Nb微合金化DH鋼的組織性能. 工程科學學報, 2021, 43(3):392
Liang J T, Zhao Z Z, Liu K, et al. Microstructure and properties of 1300-MPa grade Nb microalloying DH steel. Chin J Eng, 2021, 43(3): 392
|
[8] |
張宇光, 趙愛民, 趙征志, 等. 合金元素對TRIP鋼連續冷卻固態相變和硬度的影響. 沈陽工業大學學報, 2010, 32(4):390
Zhang Y G, Zhao A M, Zhao Z Z, et al. Influence of alloying element on continuous cooling solid phase transformation and hardness of TRIP steels. J Shenyang Univ Technol, 2010, 32(4): 390
|
[9] |
Bocharova E, Khlopkov K, Sebald R. Effect of microalloying elements on phase transformation, microstructure and mechanical properties in dual-phase steels. Mater Sci Forum, 2016, 879: 483 doi: 10.4028/www.scientific.net/MSF.879.483
|
[10] |
陳雨來, 董辰, 江海濤, 等. Si、Al元素對QP鋼連續冷卻的相變及組織影響. 熱加工工藝, 2010, 39(2):10 doi: 10.3969/j.issn.1001-3814.2010.02.004
Chen Y L, Dong C, Jiang H T, et al. Effect of aluminum and silicon on phase transformation and microstructure of quenching and partitioning steel during continuous cooling. Hot Work Technol, 2010, 39(2): 10 doi: 10.3969/j.issn.1001-3814.2010.02.004
|
[11] |
Li D Z, Yan Z J, Wang R, et al. Effect of hot deformation processes on phase transformation of low-alloyed, multiphase, high-strength steel. Steel Res Int, 2020, 92(1): 1900522
|
[12] |
Rodrigues D G, Maria G G B, Viana N A L, et al. Effect of low cold-rolling strain on microstructure, texture, phase transformation, and mechanical properties of 2304 lean duplex stainless steel. Mater Charact, 2019, 150: 138 doi: 10.1016/j.matchar.2019.02.011
|
[13] |
朱晶, 劉帥, 賈維平, 等. 退火工藝對Ti+Nb-IF鋼組織與性能的影響. 熱加工工藝, 2008, 37(22):59 doi: 10.3969/j.issn.1001-3814.2008.22.019
Zhu J, Liu S, Jia W P, et al. Effect of annealing process on microstructure and properties of Ti+Nb-IF steel. Hot Work Technol, 2008, 37(22): 59 doi: 10.3969/j.issn.1001-3814.2008.22.019
|
[14] |
Petrovi? D S, Klan?nik G, Pirnat M, et al. Differential scanning calorimetry study of the solidification sequence of austenitic stainless steel. J Therm Anal Calorim, 2011, 105(1): 251 doi: 10.1007/s10973-011-1375-2
|
[15] |
Raju S, Ganesh B J, Banerjee A, et al. Characterisation of thermal stability and phase transformation energetics in tempered 9Cr–1Mo steel using drop and differential scanning calorimetry. Mater Sci Eng A, 2007, 465(1-2): 29 doi: 10.1016/j.msea.2007.01.127
|
[16] |
Wielgosz E, Kargul T. Differential scanning calorimetry study of peritectic steel grades. J Therm Anal Calorim, 2015, 119(3): 1547 doi: 10.1007/s10973-014-4302-5
|
[17] |
Ganjehfard K, Taghiabadi R, Noghani M T, et al. Tensile properties and hot tearing susceptibility of cast Al-Cu alloys containing excess Fe and Si. Int J Miner Metall Mater, 2021, 28(4): 718 doi: 10.1007/s12613-020-2039-7
|
[18] |
Ohnaka I. Mathematical analysis of solute redistribution during solidification with diffusion in solid phase. Trans Iron Steel Inst Jpn, 1986, 26(12): 1045 doi: 10.2355/isijinternational1966.26.1045
|
[19] |
Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels. Metall Mater Trans A, 2001, 32(7): 1755 doi: 10.1007/s11661-001-0152-4
|
[20] |
Choudhary S K, Ghosh A. Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ Int, 2009, 49(12): 1819 doi: 10.2355/isijinternational.49.1819
|
[21] |
You D L, Bernhard C, Wieser G, et al. Microsegregation model with local equilibrium partition coefficients during solidification of steels. Steel Res Int, 2016, 87(7): 840 doi: 10.1002/srin.201500216
|
[22] |
Ma Z T, Janke D. Characteristics of oxide precipitation and growth during solidification of deoxidized steel. ISIJ Int, 1998, 38(1): 46 doi: 10.2355/isijinternational.38.46
|
[23] |
Zhang X, Ma G J, Liu M K. Micro-segregation model calculation of residual tin in boiler and pressure vessel steel. Philos Mag, 2019, 99(9): 1041 doi: 10.1080/14786435.2019.1573333
|