Citation: | HUANG Ri-kang, JIANG Ren-bo, ZHOU Qiu-yue, REN Ying, JIANG Dong-bin, ZHANG Li-feng. Morphology evolution and formation mechanism of Al–Ti–O inclusions in an ultra low carbon steel[J]. Chinese Journal of Engineering, 2023, 45(5): 755-764. doi: 10.13374/j.issn2095-9389.2022.03.02.001 |
[1] |
張立峰, 許中波, 靖雪晶, 等. IF鋼中碳、氮含量的控制. 連鑄, 1997, 22(6):35
Zhang L F, Xu Z B, Jing X J, et al. Control of carbon & nitrogen content in IF steel. Continuous Cast, 1997, 22(6): 35
|
[2] |
許帥, 孫新軍, 梁小凱, 等. 高鈦耐磨鋼凝固組織中TiC析出相表征. 鋼鐵研究學報, 2021, 33(6):521
Xu S, Sun X J, Liang X K, et al. Characterization of TiC precipitation in high Ti wear-resistant steel solidification structure. J Iron Steel Res, 2021, 33(6): 521
|
[3] |
李成剛, 周曉光, 蔣小冬, 等. 冷卻工藝對Ti微合金化高強鋼組織和硬度的影響. 鋼鐵研究學報, 2021, 33(9):987 doi: 10.13228/j.boyuan.issn1001-0963.20200202
Li C G, Zhou X G, Jiang X D, et al. Influence of cooling processes on microstructure and hardness of Ti micro-alloyed high strength steel. J Iron Steel Res, 2021, 33(9): 987 doi: 10.13228/j.boyuan.issn1001-0963.20200202
|
[4] |
Basu S, Choudhary S K, Girase N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel. ISIJ Int, 2004, 44(10): 1653 doi: 10.2355/isijinternational.44.1653
|
[5] |
隋亞飛, 孫國棟, 趙艷, 等. IF 鋼中含Ti夾雜物的衍變規律. 北京科技大學學報, 2014, 36(9):1174
Sui Y F, Sun G D, Zhao Y, et al. Evolution of titaniferous inclusions in IF steelmaking. J Univ Sci Technol Beijing, 2014, 36(9): 1174
|
[6] |
Matsuura H, Wang C, Wen G H, et al. The transient stages of inclusion evolution during Al and/or Ti additions to molten iron. ISIJ Int, 2007, 47(9): 1265 doi: 10.2355/isijinternational.47.1265
|
[7] |
段豪劍, 張立峰, 付俊偉, 等. 439鐵素體不銹鋼中TiN生成熱力學分析 // 2014年全國冶金物理化學學術會議論文集. 包頭, 2014
Duan H J, Zhang L F, Fu J W, et al. Thermodynamic analysis of TiN formation in 439 ferritic stainless steel // National Proceedings of Conference on Metallurgical Physical Chemistry. Baotou, 2014
|
[8] |
王啟明, 成國光. 含Ti不銹鋼冶金工藝進展. 工程科學學報, 2021, 43(11):1447
Wang Q M, Cheng G G. Metallurgy development of Ti-stabilized stainless steel. Chin J Eng, 2021, 43(11): 1447
|
[9] |
高帥, 王敏, 郭建龍, 等. IF鋼鑄坯厚度方向夾雜物分布及潔凈度評估. 工程科學學報, 2020, 42(2):194
Gao S, Wang M, Guo J L, et al. Evaluation of cleanliness and distribution of inclusions in the thickness direction of interstitial free (IF) steel slabs. Chin J Eng, 2020, 42(2): 194
|
[10] |
王寶, 李任春, 劉俊山, 等. DC06 IF鋼精煉渣成分優化及鋼-渣中氧的控制. 鋼鐵研究學報, 2021, 33(4):293
Wang B, Li R C, Liu J S, et al. Composition optimization of DC06 IF steel refining slag and control of oxygen in steel and slag. J Iron Steel Res, 2021, 33(4): 293
|
[11] |
劉振楠, 陶東平, 姚春玲, 等. 鈦微合金鋼爐外精煉相平衡研究與熱力學分析. 鋼鐵研究學報, 2019, 31(8):702 doi: 10.13228/j.boyuan.issn1001-0963.20190004
Liu Z N, Tao D P, Yao C L, et al. Phase equilibrium study and thermodynamic analysis on secondary refining process of titanium-microalloyed steel. J Iron Steel Res, 2019, 31(8): 702 doi: 10.13228/j.boyuan.issn1001-0963.20190004
|
[12] |
張立峰. 鋼中非金屬夾雜物: 工業實踐. 北京: 冶金工業出版社, 2020
Zhang L F. Non-metallic Inclusions in Steels: Industrial Practice. Beijing: Metallurgical Industry Press, 2020
|
[13] |
張立峰. 鋼中非金屬夾雜物: 基礎. 北京: 冶金工業出版社, 2019
Zhang L F. Non-metallic Inclusions in Steels: Fundamentals. Beijing: Metallurgical Industry Press, 2019
|
[14] |
黃健, 閔義, 姜茂發, 等. IF鋼生產過程非金屬夾雜物的演變行為. 東北大學學報(自然科學版), 2013, 34(3):368 doi: 10.3969/j.issn.1005-3026.2013.03.016
Huang J, Min Y, Jiang M F, et al. Evolution of non-metallic inclusions during IF steel making process. J Northeast Univ, 2013, 34(3): 368 doi: 10.3969/j.issn.1005-3026.2013.03.016
|
[15] |
李朋歡, 葉健松, 胡文豪, 等. 鈦合金化對鋁鎮靜鋼中夾雜物的影響. 鋼鐵研究學報, 2013, 25(10):20
Li P H, Ye J S, Hu W H, et al. Effect of Ti-alloyed on inclusions in Al-killed steel. J Iron Steel Res, 2013, 25(10): 20
|
[16] |
Jung I H, Decterov S A, Pelton A D. Computer application of thermodynamic databases to inclusion engineering. ISIJ Int, 2004, 44(3): 527 doi: 10.2355/isijinternational.44.527
|
[17] |
Li M G, Matsuura H, Tsukihashi F. Evolution of Al–Ti oxide inclusion during isothermal heating of Fe–Al–Ti alloy at 1573 K (1300 °C). Metall Mater Trans B, 2017, 48(3): 1915 doi: 10.1007/s11663-017-0968-y
|
[18] |
張立峰, 李燕龍, 任英. 鋼中非金屬夾雜物的相關基礎研究(Ⅱ)——夾雜物檢測方法及脫氧熱力學基礎. 鋼鐵, 2013, 48(12): 1
Zhang L F, Li Y L, Ren Y. Fundamentals of non-metallic inclusions in steel: Part II. Evaluation method of inclusions and thermodynamics of steel deoxidation. Iron & Steel, 2013, 48(12): 1
|
[19] |
Van Ende M A, Guo M X, Dekkers R, et al. Formation and evolution of Al–Ti oxide inclusions during secondary steel refining. ISIJ Int, 2009, 49(8): 1133 doi: 10.2355/isijinternational.49.1133
|
[20] |
潘明, 于會香, 季晨曦, 等. RH精煉過程中吹氧量對IF鋼潔凈度的影響. 工程科學學報, 2020, 42(7):846
Pan M, Yu H X, Ji C X, et al. Effect of oxygen blowing during RH treatment on the cleanliness of IF steel. Chin J Eng, 2020, 42(7): 846
|
[21] |
Wang M, Bao Y P, Cui H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process. ISIJ Int, 2010, 50(11): 1606 doi: 10.2355/isijinternational.50.1606
|
[22] |
Doo W C, Kim D Y, Kang S C, et al. The morphology of Al–Ti–O complex oxide inclusions formed in an ultra low-carbon steel melt during the RH process. Met Mater Int, 2007, 13(3): 249 doi: 10.1007/BF03027813
|
[23] |
顧超, 趙立華, 甘鵬. 超低碳鋼精煉過程中Fe–Al–Ti–O類復合氧化物夾雜的演變與控制. 工程科學學報, 2019, 41(6):757
Gu C, Zhao L H, Gan P. Revolution and control of Fe–Al–Ti–O complex oxide inclusions in ultralow-carbon steel during refining process. Chin J Eng, 2019, 41(6): 757
|
[24] |
袁保輝, 劉建華, 周海龍, 等. RH強制脫碳與自然脫碳工藝生產IF鋼精煉效果分析. 工程科學學報, 2021, 43(8):1107
Yuan B H, Liu J H, Zhou H L, et al. Refining effect of IF steel produced by RH forced and natural decarburization process. Chin J Eng, 2021, 43(8): 1107
|
[25] |
Qin Y M, Wang X H, Huang F X, et al. Influence of reoxidation by slag and air on inclusions in IF steel. Metall Res Technol, 2015, 112(4): 405 doi: 10.1051/metal/2015025
|
[26] |
Mitsutaka H, Kimihisa I. Thermodynamic Data for Steelmaking. Sendai: Tohoku University Press, 2010
|
[27] |
李寧, 王璐, 李承志, 等. 過共析簾線鋼中Ti夾雜的析出熱力學與形成機制. 鋼鐵研究學報, 2022, 34(3):200 doi: 10.13228/j.boyuan.issn1001-0963.20210115
Li N, Wang L, Li C Z, et al. Precipitation thermodynamics and formation mechanism of Ti inclusions in hypereutectoid tire cord steel. J Iron Steel Res, 2022, 34(3): 200 doi: 10.13228/j.boyuan.issn1001-0963.20210115
|