Citation: | WEN Guang-hua, CHEN Fu-hang, JIANG Wen-bo, HOU Zi-bing, TANG Ping. Theory and application of “smart mold powders” for continuous casting of steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1558-1565. doi: 10.13374/j.issn2095-9389.2022.01.04.002 |
[1] |
Mills K C, Fox A B. The role of mould fluxes in continuous casting-so simple yet so complex. ISIJ Int, 2003, 43(10): 1479 doi: 10.2355/isijinternational.43.1479
|
[2] |
Mills K C. A short history of mould powders. Ironmak Steelmak, 2017, 44(5): 326 doi: 10.1080/03019233.2017.1288367
|
[3] |
Yang J, Wang L, Wang Q, et al. Challenges in the mold flux design: Development of F-free fluxes and fluxes for casting of high-Al steel. Steel Res Int, 2022, 93(3): 2100123 doi: 10.1002/srin.202100123
|
[4] |
Carli R. Design and manufacturing of mold fluxes-business model changing over 50 years of history // 5th International Congress on the Science and Technology of Steelmaking. Dresden, 2012: 1
|
[5] |
Sarkar R, Li Z S. Isothermal and non-isothermal crystallization kinetics of mold fluxes used in continuous casting of steel: A review. Metall Mater Trans B, 2021, 52(3): 1357 doi: 10.1007/s11663-021-02099-5
|
[6] |
Chilov A. Mass Spectrometric Study of Volatile Components in Mould Powders [Dissertation]. Espoo: Helsinki University of Technology, 2005
|
[7] |
Supradist M, Cramb A W, Schwerdtfeger K. Combustion of carbon in casting powder in a temperature gradient. ISIJ Int, 2004, 44(5): 817 doi: 10.2355/isijinternational.44.817
|
[8] |
Mills K C. Structure and properties of slags used in the continuous casting of steel: Part 2 specialist mould powders. ISIJ Int, 2016, 56(1): 14 doi: 10.2355/isijinternational.ISIJINT-2015-355
|
[9] |
Gu S P, Yu L, Wen G H et al. Qualitative, quantitative and mechanism research of volatiles in the most commonly used CaO–SiO2–CaF2–Na2O slag during casting process. Trans Indian Inst Met, 2021, 74(4): 775 doi: 10.1007/s12666-021-02184-y
|
[10] |
Shilov A, Holappa L. Mass spectrometric measurements of the gas phase composition over mould powder samples in vacuum conditions at 50–1550 °C. Steel Res Int, 2006, 77(11): 803 doi: 10.1002/srin.200606465
|
[11] |
高金星, 文光華, 唐萍, 等. Al2O3對連鑄保護渣中氟浸出的影響. 工程科學學報, 2015, 37(5):573
Gao J X, Wen G H, Tang P, et al. Effects of Al2O3 on the leaching of fluorine in mold fluxes. Chin J Eng, 2015, 37(5): 573
|
[12] |
高金星. 含Al2O3和CaF2連鑄結晶器保護渣成分、結構和性能的基礎研究[學位論文]. 重慶: 重慶大學, 2016
Gao J X. Fundamental Research on the Component, Structure and Properties of Mold Fluxes Containing Al2O3 and CaF2 [Dissertation]. Chongqing: Chongqing University, 2016
|
[13] |
Watanabe K, Tsutsumi K, Suzuki M, et al. Development of new mold flux for continuous casting based on non-Newtonian fluid properties. ISIJ Int, 2014, 54(4): 865 doi: 10.2355/isijinternational.54.865
|
[14] |
Shin S H, Yoon D W, Cho J W, et al. Controlling shear thinning property of lime silica based mold flux system with borate additive at 1623 K. J Non Cryst Solids, 2015, 425: 83 doi: 10.1016/j.jnoncrysol.2015.05.032
|
[15] |
Gu S P, Wen G H, Guo J L, et al. Effect of Al2O3 on non-Newtonian property and its relation to structure of mold fluxes during shear stress field at 1573 K. J Non Cryst Solids, 2020, 547: 120312 doi: 10.1016/j.jnoncrysol.2020.120312
|
[16] |
Yoon D W, Cho J W, Kim S H. Controlling radiative heat transfer across the mold flux layer by the scattering effect of the borosilicate mold flux system with metallic iron. Metall Mater Trans B, 2017, 48(4): 1951 doi: 10.1007/s11663-017-0975-z
|
[17] |
Kromhout J A. Mold Powders for High Speed Continuous Casting of Steel [Dissertation]. Delft: Delft University of Technology, 2011
|
[18] |
朱丹, 羅泰義, 宋謝炎, 等. 基性−超基性巖漿成巖和成礦過程中Soret效應的研究進展. 礦物學報, 2007, 27(增刊1): 265
Zhu D, Luo T Y, Song X Y, et al. Advances in research on soret effects in petrogenesis and metallogenesis of mafic-ultramafic rocks. Acta Mineral Sin, 2007, 27(Suppl 1): 265
|
[19] |
常翱飛, 丁興. 熱擴散驅動的元素分異和同位素分餾: 一種不容忽視的硅酸鹽成分分異機制. 巖石學報, 2020, 36(1):99 doi: 10.18654/1000-0569/2020.01.11
Chang A F, Ding X. Thermodiffusion driven element and isotope fractionations: A remarkable differentiation mechanism in silicate systems. Acta Petrol Sin, 2020, 36(1): 99 doi: 10.18654/1000-0569/2020.01.11
|
[20] |
Lesher C E, Walker D. Solution properties of silicate liquids from thermal diffusion experiments. Geochimica Cosmochimica Acta, 1986, 50(7): 1397 doi: 10.1016/0016-7037(86)90313-3
|
[21] |
Lesher C E. Effects of silicate liquid composition on mineral-liquid element partitioning from Soret diffusion studies. J Geophys Res Solid Earth, 1986, 91(B6): 6123 doi: 10.1029/JB091iB06p06123
|
[22] |
Mills K C. Structure and properties of slags used in the continuous casting of steel: Part 1 Conventional mould powders. ISIJ Int, 2016, 56(1): 1 doi: 10.2355/isijinternational.ISIJINT-2015-231
|
[23] |
文光華, 楊昌霖, 唐萍. 連鑄結晶器內渣膜形成及傳熱的研究現狀. 工程科學學報, 2019, 41(1):12
Wen G H, Yang C L, Tang P. Research overview of formation and heat transfer of slag film in mold during continuous casting. Chin J Eng, 2019, 41(1): 12
|
[24] |
Gao J X, Wen G H, Huang T, et al. Effect of Al speciation on the structure of high-Al steels mold fluxes containing fluoride. J Am Ceram Soc, 2016, 99(12): 3941 doi: 10.1111/jace.14444
|
[25] |
Gao J X, Wen G H, Liu Q, et al. Effect of Al2O3 on the fluoride volatilization during melting and ion release in water of mold flux. J Non Cryst Solids, 2015, 409: 8 doi: 10.1016/j.jnoncrysol.2014.11.014
|
[26] |
付孝錦. 高鋁TRIP鋼連鑄結晶器保護渣基礎研究及應用實踐[學位論文]. 重慶: 重慶大學, 2014
Fu X J. Fundamental Research and Application of Mold Fluxes for Casting High-Al TRIP Steel [Dissertation]. Chongqing: Chongqing University, 2014
|
[27] |
谷少鵬. 剪切力對連鑄保護渣粘度、結晶及傳熱性能的影響研究[學位論文]. 重慶: 重慶大學, 2021
Gu S P. Effect of Shear Stress on Viscosity, Crystallization and Heat Transfer Behaviors of Continuous Casting Mold Fluxes [Dissertation]. Chongqing: Chongqing University, 2021
|
[28] |
楊昌霖. 連鑄結晶器保護渣凝固傳熱及渣膜形成的模擬研究[學位論文]. 重慶: 重慶大學, 2018
Yang C L. Simulation Study on Heat Transfer and Formation of Slag Film during Solidification of Mold Flux Used for Continuous Casting [Dissertation]. Chongqing: Chongqing University, 2018
|