Citation: | LIAO Shu-qing, DONG Guang-sheng, ZHAO Ying-ying, CHEN Yu-jin, CAO Dian-xue, ZHU Kai. Research progress and prospect of potassium-ion batteries[J]. Chinese Journal of Engineering, 2023, 45(7): 1131-1148. doi: 10.13374/j.issn2095-9389.2021.08.17.004 |
[1] |
Lu J, Wu T P, Amine K. State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat Energy, 2017, 2: 17011 doi: 10.1038/nenergy.2017.11
|
[2] |
Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058): 928 doi: 10.1126/science.1212741
|
[3] |
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359 doi: 10.1038/35104644
|
[4] |
Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451(7179): 652 doi: 10.1038/451652a
|
[5] |
Han M H, Gonzalo E, Singh G, et al. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci, 2015, 8(1): 81 doi: 10.1039/C4EE03192J
|
[6] |
Xie D H, Zhang M, Wu Y, et al. A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Funct Mater, 2020, 30(5): 1906770 doi: 10.1002/adfm.201906770
|
[7] |
Zhang W C, Liu Y J, Guo Z P. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv, 2019, 5(5): eaav7412 doi: 10.1126/sciadv.aav7412
|
[8] |
Xu Y, Bahmani F, Zhou M, et al. Enhancing potassium-ion battery performance by defect and interlayer engineering. Nanoscale Horiz, 2019, 4(1): 202 doi: 10.1039/C8NH00305J
|
[9] |
Guo J Z, Gu Z Y, Zhao X X, et al. Flexible Na/K-ion full batteries from the renewable cotton cloth-derived stable, low-cost, and binder-free anode and cathode. Adv Energy Mater, 2019, 9(38): 1902056 doi: 10.1002/aenm.201902056
|
[10] |
Dhir S, Wheeler S, Capone I, et al. Outlook on K-ion batteries. Chem, 2020, 6(10): 2442 doi: 10.1016/j.chempr.2020.08.012
|
[11] |
Wang J, Fan L, Liu Z M, et al. In situ alloying strategy for exceptional potassium ion batteries. ACS Nano, 2019, 13(3): 3703 doi: 10.1021/acsnano.9b00634
|
[12] |
Komaba S, Hasegawa T, Dahbi M, et al. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem Commun, 2015, 60: 172 doi: 10.1016/j.elecom.2015.09.002
|
[13] |
Jian Z L, Luo W, Ji X L. Carbon electrodes for K-ion batteries. J Am Chem Soc, 2015, 137(36): 11566 doi: 10.1021/jacs.5b06809
|
[14] |
Okoshi M, Yamada Y, Komaba S, et al. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: A comparison with lithium, sodium, and magnesium ions. J Electrochem Soc, 2016, 164(2): A54
|
[15] |
Lei K X, Li F J, Mu C N, et al. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ Sci, 2017, 10(2): 552 doi: 10.1039/C6EE03185D
|
[16] |
Chang X Q, Zhou X L, Ou X W, et al. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv Energy Mater, 2019, 9(47): 1902672 doi: 10.1002/aenm.201902672
|
[17] |
Hwang J Y, Myung S T, Sun Y K. Recent progress in rechargeable potassium batteries. Adv Functi Mater, 2018, 28(43): 1802938 doi: 10.1002/adfm.201802938
|
[18] |
Yi Z, Lin N, Zhang W Q, et al. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale, 2018, 10(27): 13236 doi: 10.1039/C8NR03829E
|
[19] |
Kubota K, Dahbi M, Hosaka T, et al. Towards k-ion and na-ion batteries as “Beyond Li-ion”. Chem Rec, 2018, 18(4): 459 doi: 10.1002/tcr.201700057
|
[20] |
Dresselhaus M S, Dresselhaus G. Intercalation compounds of graphite. Adv Phys, 1981, 30(2): 139 doi: 10.1080/00018738100101367
|
[21] |
Luo W, Wan J Y, Ozdemir B, et al. Potassium ion batteries with graphitic materials. Nano Lett, 2015, 15(11): 7671 doi: 10.1021/acs.nanolett.5b03667
|
[22] |
Liu J L, Yin T T, Tian B B, et al. Unraveling the potassium storage mechanism in graphite foam. Adv Energy Mater, 2019, 9(22): 1900579 doi: 10.1002/aenm.201900579
|
[23] |
Xing Z Y, Qi Y T, Jian Z L, et al. Polynanocrystalline graphite: A new carbon anode with superior cycling performance for K-ion batteries. ACS Appl Mater Interfaces, 2017, 9(5): 4343 doi: 10.1021/acsami.6b06767
|
[24] |
An Y L, Fei H, Zeng G, et al. Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte. J Power Sources, 2018, 378: 66 doi: 10.1016/j.jpowsour.2017.12.033
|
[25] |
Carboni M, Naylor A J, Valvo M, et al. Unlocking high capacities of graphite anodes for potassium-ion batteries. RSC Adv, 2019, 9(36): 21070 doi: 10.1039/C9RA01931F
|
[26] |
Rahman M M, Hou C, Mateti S, et al. Documenting capacity and cyclic stability enhancements in synthetic graphite potassium-ion battery anode material modified by low-energy liquid phase ball milling. J Power Sources, 2020, 476: 228733 doi: 10.1016/j.jpowsour.2020.228733
|
[27] |
Jiang J M, Nie G D, Nie P, et al. Nanohollow carbon for rechargeable batteries: Ongoing progresses and challenges. Nanomicro Lett, 2020, 12(1): 183
|
[28] |
Feng Y H, Chen S H, Shen D Y, et al. Cross-linked hollow graphitic carbon as low-cost and high-performance anode for potassium ion batteries. Energy &Environ Mater, 2021, 4(3): 451
|
[29] |
Cao B, Zhang Q, Liu H, et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv Energy Mater, 2018, 8(25): 1801149 doi: 10.1002/aenm.201801149
|
[30] |
Zhang W L, Ming J, Zhao W L, et al. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv Funct Mater, 2019, 29(35): 1903641 doi: 10.1002/adfm.201903641
|
[31] |
Kim J, Choi M S, Shin K H, et al. Rational design of carbon nanomaterials for electrochemical sodium storage and capture. Adv Mater, 2019, 31(34): e1803444 doi: 10.1002/adma.201803444
|
[32] |
Xiao B W, Rojo T, Li X L. Hard carbon as sodium-ion battery anodes: progress and challenges. ChemSusChem, 2019, 12(1): 133 doi: 10.1002/cssc.201801879
|
[33] |
Dou X W, Hasa I, Saurel D, et al. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater Today, 2019, 23: 87 doi: 10.1016/j.mattod.2018.12.040
|
[34] |
Lee H H, Wan C C, Wang Y Y. Identity and thermodynamics of lithium intercalated in graphite. J Power Sources, 2003, 114(2): 285 doi: 10.1016/S0378-7753(02)00606-7
|
[35] |
Dahn J R, Zheng T, Liu Y H, et al. Mechanisms for lithium insertion in carbonaceous materials. Science, 1995, 270(5236): 590 doi: 10.1126/science.270.5236.590
|
[36] |
Luo W, Jian Z L, Xing Z Y, et al. Electrochemically expandable soft carbon as anodes for Na-ion batteries. ACS Cent Sci, 2015, 1(9): 516 doi: 10.1021/acscentsci.5b00329
|
[37] |
Wang X P, Han K, Qin D D, et al. Polycrystalline soft carbon semi-hollow microrods as anode for advanced K-ion full batteries. Nanoscale, 2017, 9(46): 18216 doi: 10.1039/C7NR06645G
|
[38] |
Bin D S, Li Y M, Sun Y G, et al. Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv Energy Mater, 2018, 8(26): 1800855 doi: 10.1002/aenm.201800855
|
[39] |
Jian Z L, Xing Z Y, Bommier C, et al. Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode. Adv Energy Mater, 2016, 6(3): 1501874 doi: 10.1002/aenm.201501874
|
[40] |
Chen C J, Wang Z, Zhang B, et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater, 2017, 8: 161 doi: 10.1016/j.ensm.2017.05.010
|
[41] |
Jian Z L, Hwang S, Li Z F, et al. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv Funct Mater, 2017, 27(26): 1700324 doi: 10.1002/adfm.201700324
|
[42] |
Tai Z X, Zhang Q, Liu Y, et al. Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon, 2017, 123: 54 doi: 10.1016/j.carbon.2017.07.041
|
[43] |
Zhang Q F, Cheng X L, Wang C X, et al. Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries. Energy Environ Sci, 2021, 14(2): 965 doi: 10.1039/D0EE03203D
|
[44] |
Liu Y, Dai H D, Wu L, et al. A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries. Adv Energy Mater, 2019, 9(34): 1901379 doi: 10.1002/aenm.201901379
|
[45] |
Lu C, Sun Z T, Yu L H, et al. Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries. Adv Energy Mater, 2020, 10(28): 2001161 doi: 10.1002/aenm.202001161
|
[46] |
Ma M Z, Zhang S P, Yao Y, et al. Heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon: Superior potassium-ion storage and insight into potassium storage mechanism. Adv Mater, 2020, 32(22): e2000958 doi: 10.1002/adma.202000958
|
[47] |
Ferrero G A, Preuss K, Marinovic A, et al. Fe-N-Doped carbon capsules with outstanding electrochemical performance and stability for the oxygen reduction reaction in both acid and alkaline conditions. ACS Nano, 2016, 10(6): 5922 doi: 10.1021/acsnano.6b01247
|
[48] |
Wu J X, Pan Z Y, Zhang Y, et al. The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. J Mater Chem A, 2018, 6(27): 12932 doi: 10.1039/C8TA03968B
|
[49] |
Hong Z S, Maleki H, Ludwig T, et al. New insights into carbon-based and MXene anodes for Na and K-ion storage: A review. J Energy Chem, 2021, 62: 660 doi: 10.1016/j.jechem.2021.04.031
|
[50] |
Yang W X, Zhou J H, Wang S, et al. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ Sci, 2019, 12(5): 1605 doi: 10.1039/C9EE00536F
|
[51] |
Zhang W L, Cao Z, Wang W X, et al. A site-selective doping strategy of carbon anodes with remarkable K-ion storage capacity. Angew Chem Int Ed, 2020, 59(11): 4448 doi: 10.1002/anie.201913368
|
[52] |
Zhang W L, Yin J, Sun M L, et al. Direct pyrolysis of supermolecules: An ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Adv Mater, 2020, 32(25): e2000732 doi: 10.1002/adma.202000732
|
[53] |
Xu Y, Zhang C L, Zhou M, et al. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat Commun, 2018, 9(1): 1720 doi: 10.1038/s41467-018-04190-z
|
[54] |
Huang H J, Xu R, Feng Y Z, et al. Sodium/Potassium-ion batteries: Boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv Mater, 2020, 32(8): e1904320 doi: 10.1002/adma.201904320
|
[55] |
Yan J, Li H M, Wang K L, et al. Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode. Adv Energy Mater, 2021, 11(21): 2003911 doi: 10.1002/aenm.202003911
|
[56] |
Qian J F, Wu X Y, Cao Y L, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed, 2013, 52(17): 4633 doi: 10.1002/anie.201209689
|
[57] |
Kim Y, Park Y, Choi A, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater, 2013, 25(22): 3045 doi: 10.1002/adma.201204877
|
[58] |
Sun Y M, Wang L, Li Y, et al. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule, 2019, 3(4): 1080 doi: 10.1016/j.joule.2019.01.017
|
[59] |
Liu Y H, Liu Q Z, Jian C, et al. Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus. Nat Commun, 2020, 11: 2520 doi: 10.1038/s41467-020-16077-z
|
[60] |
Xiong P X, Bai P X, Tu S B, et al. Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small, 2018: e1802140
|
[61] |
Liu D, Huang X K, Qu D Y, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy, 2018, 52: 1 doi: 10.1016/j.nanoen.2018.07.023
|
[62] |
Xiao W, Li X F, Cao B, et al. Constructing high-rate and long-life phosphorus/carbon anodes for potassium-ion batteries through rational nanoconfinement. Nano Energy, 2021, 83: 105772 doi: 10.1016/j.nanoen.2021.105772
|
[63] |
Li J L, Qin W, Xie J, et al. Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy, 2018, 53: 415 doi: 10.1016/j.nanoen.2018.08.075
|
[64] |
Ding J, Zhang H, Zhou H, et al. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv Mater, 2019, 31(30): e1900429
|
[65] |
Tian S, Guan D, Lu J, et al. Synthesis of the electrochemically stable sulfur-doped bamboo charcoal as the anode material of potassium-ion batteries. J Power Sources, 2020, 448: 227572 doi: 10.1016/j.jpowsour.2019.227572
|
[66] |
Xie X, Qi S, Wu D, et al. Porous surfur-doped hard carbon for excellent potassium storage. Chin Chem Lett, 2020, 31(1): 223 doi: 10.1016/j.cclet.2019.10.008
|
[67] |
Long W Y, Fang B Z, Ignaszak A, et al. Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries. Chem Soc Rev, 2017, 46(23): 7176 doi: 10.1039/C6CS00639F
|
[68] |
Chen W M, Wan M, Liu Q, et al. Heteroatom-doped carbon materials: Synthesis, mechanism, and application for sodium-ion batteries. Small Methods, 2019, 3(4): 1800323 doi: 10.1002/smtd.201800323
|
[69] |
Xia G L, Wang C L, Jiang P, et al. Nitrogen/oxygen co-doped mesoporous carbon octahedrons for high-performance potassium-ion batteries. J Mater Chem A, 2019, 7(19): 12317 doi: 10.1039/C8TA12504J
|
[70] |
Cui R C, Xu B, Dong H J, et al. N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries. Adv Sci, 2020, 7(5): 1902547 doi: 10.1002/advs.201902547
|
[71] |
Zhu Y Y, Wang M, Zhang Y, et al. Nitrogen/oxygen dual-doped hierarchically porous carbon/graphene composite as high-performance anode for potassium storage. Electrochimica Acta, 2021, 377: 138093 doi: 10.1016/j.electacta.2021.138093
|
[72] |
Wang L F, Li S, Li J, et al. Nitrogen/sulphur co-doped porous carbon derived from wasted wet wipes as promising anode material for high performance capacitive potassium-ion storage. Mater Today Energy, 2019, 13: 195 doi: 10.1016/j.mtener.2019.05.010
|
[73] |
Li Y P, Zhong W, Yang C, et al. N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem Eng J, 2019, 358: 1147 doi: 10.1016/j.cej.2018.10.135
|
[74] |
Ma H L, Qi X J, Peng D Q, et al. Novel fabrication of N/S Co-doped hierarchically porous carbon for potassium-ion batteries. Chemistry Select, 2019, 4(39): 11488
|
[75] |
He H N, Huang D, Tang Y, et al. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy, 2019, 57: 728 doi: 10.1016/j.nanoen.2019.01.009
|
[76] |
Gan Q M, Xie J W, Zhu Y H, et al. Sub-20 nm carbon nanoparticles with expanded interlayer spacing for high-performance potassium storage. ACS Appl Mater Interfaces, 2019, 11(1): 930 doi: 10.1021/acsami.8b18553
|
[77] |
Zhang Z L, Jia B R, Liu L, et al. Hollow multihole carbon bowls: A stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries. ACS Nano, 2019, 13(10): 11363 doi: 10.1021/acsnano.9b04728
|
[78] |
Ruan J F, Zhao Y, Luo S, et al. Fast and stable potassium-ion storage achieved by in situ molecular self-assembling N/O dual-doped carbon network. Energy Storage Mater, 2019, 23: 46 doi: 10.1016/j.ensm.2019.05.037
|
[79] |
Lu X L, Pan X N, Fang Z, et al. High-performance potassium-ion batteries with robust stability based on N/S-codoped hollow carbon nanocubes. ACS Appl Mater Interfaces, 2021, 13(35): 41619 doi: 10.1021/acsami.1c10655
|
[80] |
Luan Y T, Hu R, Fang Y Z, et al. Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors. Nanomicro Lett, 2019, 11(1): 30
|
[81] |
Kishore B, Venkatesh G, Munichandraiah N. K2Ti4O9: A promising anode material for potassium ion batteries. J Electrochem Soc, 2016, 163(13): A2551 doi: 10.1149/2.0421613jes
|
[82] |
Xu S M, Liu X, Zhang Q, et al. Boosting potassium storage capacity based on stress-induced size-dependent solid-solution behavior. Adv Energy Mater, 2018, 8(32): 1802175 doi: 10.1002/aenm.201802175
|
[83] |
Han J, Xu M W, Niu Y B, et al. Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. Chem Commun, 2016, 52(75): 11274 doi: 10.1039/C6CC05102B
|
[84] |
Li Y P, Yang C H, Zheng F H, et al. Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy, 2019, 59: 582 doi: 10.1016/j.nanoen.2019.03.002
|
[85] |
Han J, Niu Y B, Bao S J, et al. Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries. Chem Commun, 2016, 52(78): 11661 doi: 10.1039/C6CC06177J
|
[86] |
Er D Q, Li J W, Naguib M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Int, 2014, 6(14): 11173 doi: 10.1021/am501144q
|
[87] |
Lian P C, Dong Y, Wu Z S, et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy, 2017, 40: 1 doi: 10.1016/j.nanoen.2017.08.002
|
[88] |
Dong Y F, Wu Z S, Zheng S H, et al. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano, 2017, 11(5): 4792 doi: 10.1021/acsnano.7b01165
|
[89] |
Fang Y Z, Hu R, Liu B Y, et al. MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J Mater Chem A, 2019, 7(10): 5363 doi: 10.1039/C8TA12069B
|
[90] |
Chong S K, Wu Y, Liu C, et al. Cryptomelane-type MnO2/carbon nanotube hybrids as bifunctional electrode material for high capacity potassium-ion full batteries. Nano Energy, 2018, 54: 106 doi: 10.1016/j.nanoen.2018.09.072
|
[91] |
Cao K Z, Liu H Q, Li W Y, et al. CuO nanoplates for high-performance potassium-ion batteries. Small, 2019, 15(36): e1901775 doi: 10.1002/smll.201901775
|
[92] |
Chen F, Wang S, He X D, et al. Hollow sphere structured V2O3@C as an anode material for high capacity potassium-ion batteries. J Mater Chem A, 2020, 8(26): 13261 doi: 10.1039/D0TA01057J
|
[93] |
Niu X G, Zhang Y, Tan L, et al. Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Mater, 2019, 22: 160 doi: 10.1016/j.ensm.2019.01.011
|
[94] |
Sun D, Ye D L, Liu P, et al. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv Energy Mater, 2018, 8(10): 1702383 doi: 10.1002/aenm.201702383
|
[95] |
Azhagurajan M, Kajita T, Itoh T, et al. In situ visualization of lithiumlon intercalation into MoS2 single crystals using differential optical microscopy with atomic layer resolution. J Am Chem Soc, 2016, 138(10): 3355 doi: 10.1021/jacs.5b11849
|
[96] |
Wang L L, Zhang Q, Zhu J, et al. Nature of extra capacity in MoS2 electrodes: Molybdenum atoms accommodate with lithium. Energy Storage Mater, 2019, 16: 37 doi: 10.1016/j.ensm.2018.04.025
|
[97] |
Ren X D, Zhao Q, McCulloch W D, et al. MoS2 as a long-life host material for potassium ion intercalation. Nano Res, 2017, 10(4): 1313 doi: 10.1007/s12274-016-1419-9
|
[98] |
Xie K Y, Yuan K, Li X, et al. Superior potassium ion storage via vertical MoS2 “Nano-Rose” with expanded interlayers on grapheme. Small, 2017, 13(42): 1701471 doi: 10.1002/smll.201701471
|
[99] |
Bai J, Xi B J, Mao H Z, et al. One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater, 2018, 30(35): e1802310 doi: 10.1002/adma.201802310
|
[100] |
Lao M M, Zhang Y, Luo W B, et al. Alloy-based anode materials toward advanced sodium-Ion batteries. Adv Mater, 2017, 29(48): 1700622 doi: 10.1002/adma.201700622
|
[101] |
Sultana I, Rahman M M, Chen Y, et al. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater, 2018, 28(5): 1703857 doi: 10.1002/adfm.201703857
|
[102] |
Sultana I, Ramireddy T, Rahman M M, et al. Tin-based composite anodes for potassium-ion batteries. Chem Commun, 2016, 52(59): 9279 doi: 10.1039/C6CC03649J
|
[103] |
Wang Q N, Zhao X X, Ni C L, et al. Reaction and capacity-fading mechanisms of tin nanoparticles in potassium-ion batteries. J Phys Chem C, 2017, 121(23): 12652 doi: 10.1021/acs.jpcc.7b03837
|
[104] |
Wang H, Xing Z, Hu Z, et al. Sn-based submicron-particles encapsulated in porous reduced graphene oxide network: Advanced anodes for high-rate and long life potassium-ion batteries. Appl Mater Today, 2019, 15: 58 doi: 10.1016/j.apmt.2018.12.020
|
[105] |
Huang K S, Xing Z, Wang L C, et al. Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J Mater Chem A, 2018, 6(2): 434 doi: 10.1039/C7TA08171E
|
[106] |
Luo S C, Wang T Y, Lu H Y, et al. Ultrasmall SnO2 nanocrystals embedded in porous carbon as potassium ion battery anodes with long-term cycling performance. New J Chem, 2020, 44(27): 11678 doi: 10.1039/D0NJ00323A
|
[107] |
Zhang W C, Mao J F, Li S A, et al. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc, 2017, 139(9): 3316 doi: 10.1021/jacs.6b12185
|
[108] |
Li D P, Sun Q, Zhang Y M, et al. Surface-confined SnS2@C@rGO as high-performance anode materials for sodium- and potassium-ion batteries. ChemSusChem, 2019, 12(12): 2689 doi: 10.1002/cssc.201900719
|
[109] |
McCulloch W D, Ren X D, Yu M Z, et al. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl Mater Interfaces, 2015, 7(47): 26158 doi: 10.1021/acsami.5b08037
|
[110] |
Han C H, Han K, Wang X P, et al. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries. Nanoscale, 2018, 10(15): 6820 doi: 10.1039/C8NR00237A
|
[111] |
Zheng J, Yang Y, Fan X L, et al. Extremely stable antimony–carbon composite anodes for potassium-ion batteries. Energy Environ Sci, 2019, 12(2): 615 doi: 10.1039/C8EE02836B
|
[112] |
Lei K X, Wang C C, Liu L J, et al. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew Chem Int Ed, 2018, 57(17): 4687 doi: 10.1002/anie.201801389
|
[113] |
Zhang Q, Mao J F, Pang W K, et al. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv Energy Mater, 2018, 8(15): 1703288 doi: 10.1002/aenm.201703288
|
[114] |
Shen C, Cheng T L, Liu C Y, et al. Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries. J Mater Chem A, 2020, 8(1): 453 doi: 10.1039/C9TA11000C
|
[115] |
Zhao Y X, Ren X C, Xing Z J, et al. In situ formation of hierarchical Bismuth nanodots/graphene nanoarchitectures for ultrahigh-rate and durable potassium-ion storage. Small, 2020, 16(2): e1905789 doi: 10.1002/smll.201905789
|
[116] |
Li H, Zhao C X, Yin Y M, et al. N-Doped carbon coated bismuth nanorods with a hollow structure as an anode for superior-performance potassium-ion batteries. Nanoscale, 2020, 12(7): 4309 doi: 10.1039/C9NR09867D
|
[117] |
Eftekhari A. Potassium secondary cell based on Prussian blue cathode. J Power Sources, 2004, 126(1-2): 221 doi: 10.1016/j.jpowsour.2003.08.007
|
[118] |
Targholi E, Mousavi-Khoshdel S M, Rahmanifara M, et al. Cu- and Fe-hexacyanoferrate as cathode materials for Potassium ion battery: A First-principles study. Chem Phy Lett, 2017, 687: 244 doi: 10.1016/j.cplett.2017.09.029
|
[119] |
Lu Y H, Wang L, Cheng J, Goodenough J B. Prussian blue: A new framework of electrode materials for sodium batteries. Chemical Commun, 2012, 48(52): 6544 doi: 10.1039/c2cc31777j
|
[120] |
Wu X Y, Leonard D P, Ji X L. Emerging non-aqueous potassium-ion batteries: Challenges and opportunities. Chem Mater, 2017, 29(12): 5031 doi: 10.1021/acs.chemmater.7b01764
|
[121] |
Xue L G, Gao H C, Zhou W D, et al. Liquid K-Na alloy anode enables dendrite-free potassium batteries. Adv Mater, 2016, 28(43): 9608 doi: 10.1002/adma.201602633
|
[122] |
Xue L G, Li Y T, Gao H C, et al. Low-cost high-energy potassium cathode. J Am Chem Soc, 2017, 139(6): 2164 doi: 10.1021/jacs.6b12598
|
[123] |
Shaju K M, Bruce P G. Macroporous Li(Ni1/3Co1/3Mn1/3)O2: A high-power and high-energy cathode for rechargeable lithium batteries. Adv Mater, 2006, 18(17): 2330 doi: 10.1002/adma.200600958
|
[124] |
Naveen N, Park W B, Han S C, et al. Reversible K+-insertion/deinsertion and concomitant Na+-redistribution in P’3-Na0.52CrO2 for high-performance potassium-ion battery cathodes. Chem Mater, 2018, 30(6): 2049 doi: 10.1021/acs.chemmater.7b05329
|
[125] |
Bo S H, Li X, Toumar A J, et al. Layered-to-rock-salt transformation in desodiated NaxCrO2 (x 0.4). Chem Mater, 2016, 28(5): 1419 doi: 10.1021/acs.chemmater.5b04626
|
[126] |
Zhao S Q, Yan K, Munroe P, et al. Construction of hierarchical K1.39Mn3O6 spheres via AlF3 coating for high-performance potassium-ion batteries. Adv Energy Mater, 2019, 9(10): 1803757 doi: 10.1002/aenm.201803757
|
[127] |
Delmas C, Braconnier J J, Fouassier C, et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion, 1981, 3–4: 165
|
[128] |
Kim H, Seo D H, Urban A, et al. Stoichiometric layered potassium transition metal oxide for rechargeable potassium batteries. Chem Mater, 2018, 30(18): 6532 doi: 10.1021/acs.chemmater.8b03228
|
[129] |
Zhang H Y, Xi K Y, Jiang K Z, et al. Enhanced K-ion kinetics in a layered cathode for potassium ion batteries. Chem Commun, 2019, 55(55): 7910 doi: 10.1039/C9CC03156A
|
[130] |
Saravanan K, Mason C W, Rudola A, et al. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater, 2013, 3(4): 444 doi: 10.1002/aenm.201200803
|
[131] |
Recham N, Chotard J N, Dupont L, et al. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat Mater, 2010, 9(1): 68
|
[132] |
Wang Y G, Wang Y R, Hosono E, et al. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed, 2008, 47(39): 7461 doi: 10.1002/anie.200802539
|
[133] |
Kim H, Kim J C, Bo S H, et al. K-ion batteries based on a P2-type K0.6CoO2 cathode. Adv Energy Mater, 2017, 7(17): 1700098 doi: 10.1002/aenm.201700098
|
[134] |
Kim H, Seo D H, Bianchini M, et al. A new strategy for high-voltage cathodes for K-ion batteries: Stoichiometric KVPO4F. Adv Energy Mater, 2018, 8(26): 1801591 doi: 10.1002/aenm.201801591
|
[135] |
Masquelier C, Croguennec L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev, 2013, 113(8): 6552 doi: 10.1021/cr3001862
|
[136] |
Hatakeyama-Sato K, Akahane T, Go C, et al. Ultrafast charge/discharge by a 99.9% conventional lithium iron phosphate electrode containing 0. 1% redox-active fluoflavin polymer. ACS Energy Lett, 2020, 5(5): 1712
|
[137] |
Li J K, Ma Z F. Past and present of LiFePO4: From fundamental research to industrial applications. Chem, 2019, 5(1): 3 doi: 10.1016/j.chempr.2018.12.012
|
[138] |
Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144(4): 1188 doi: 10.1149/1.1837571
|
[139] |
Recham N, Rousse G, Sougrati M T, et al. Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes. Chem Mater, 2012, 24(22): 4363 doi: 10.1021/cm302428w
|
[140] |
Chihara K, Katogi A, Kubota K, et al. KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem Commun, 2017, 53(37): 5208 doi: 10.1039/C6CC10280H
|