Citation: | LAI Xin, LI Bin, MENG Zheng, LI Xiang-jun, JIN Wen-tao, WANG Xiang-jin, MA Yu-han, ZHENG Yue-jiu. Online quantitative diagnosis algorithm for the internal short circuit of a lithium-ion battery module based on the remaining charge capacity[J]. Chinese Journal of Engineering, 2023, 45(1): 158-168. doi: 10.13374/j.issn2095-9389.2021.08.02.002 |
[1] |
潘鳳文, 弓棟梁, 高瑩, 等. 基于魯棒H∞濾波的鋰離子電池SOC估計. 工程科學學報, 2021, 43(5):693
Pan F W, Gong D L, Gao Y, et al. Lithium-ion battery state of charge estimation based on a robust H∞ filter. Chin J Eng, 2021, 43(5): 693
|
[2] |
Lai X, Zheng Y J, Zhou L, et al. Electrical behavior of overdischarge-induced internal short circuit in lithium-ion cells. Electrochimica Acta, 2018, 278: 245 doi: 10.1016/j.electacta.2018.05.048
|
[3] |
安富強, 趙洪量, 程志, 等. 純電動車用鋰離子電池發展現狀與研究進展. 工程科學學報, 2019, 41(1):22
An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22
|
[4] |
宋永華, 陽岳希, 胡澤春. 電動汽車電池的現狀及發展趨勢. 電網技術, 2011, 35(4):1 doi: 10.13335/j.1000-3673.pst.2011.04.009
Song Y H, Yang Y X, Hu Z C. Present status and development trend of batteries for electric vehicles. Power Syst Technol, 2011, 35(4): 1 doi: 10.13335/j.1000-3673.pst.2011.04.009
|
[5] |
Feng X N, Ouyang M G, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater, 2018, 10: 246 doi: 10.1016/j.ensm.2017.05.013
|
[6] |
陳澤宇, 熊瑞, 孫逢春. 電動汽車電池安全事故分析與研究現狀. 機械工程學報, 2019, 55(24):93 doi: 10.3901/JME.2019.24.093
Chen Z Y, Xiong R, Sun F C. Research status and analysis for battery safety accidents in electric vehicles. J Mech Eng, 2019, 55(24): 93 doi: 10.3901/JME.2019.24.093
|
[7] |
蘇偉, 鐘國彬, 沈佳妮, 等. 鋰離子電池故障診斷技術進展. 儲能科學與技術, 2019, 8(2):225 doi: 10.12028/j.issn.2095-4239.2018.0195
Su W, Zhong G B, Shen J N, et al. The progress in fault diagnosis techniques for lithium-ion batteries. Energy Storage Sci Technol, 2019, 8(2): 225 doi: 10.12028/j.issn.2095-4239.2018.0195
|
[8] |
鄭蕓菲. 鋰離子電池在濫用條件下的安全性研究. 船電技術, 2021, 41(2):44 doi: 10.3969/j.issn.1003-4862.2021.02.011
Zheng Y F. Study on safety of lithium-ion battery under overuse conditions. Mar Electr Electron Eng, 2021, 41(2): 44 doi: 10.3969/j.issn.1003-4862.2021.02.011
|
[9] |
甘偉, 韓孝耀. 基于小波降噪-曲線相似程度的鋰離子電池內短路故障診斷方法. 機械設計與制造工程, 2021, 50(5):57 doi: 10.3969/j.issn.2095-509X.2021.05.012
Gan W, Han X Y. A lithium ion battery internal short circuit fault diagnosis method based on wavelet noise reduction and curve similarity. Mach Des Manuf Eng, 2021, 50(5): 57 doi: 10.3969/j.issn.2095-509X.2021.05.012
|
[10] |
陳明彪, 白帆飛, 宋文吉, 等. 鋰離子電池多點內短路及物理場變化. 電池, 2021, 51(2):131 doi: 10.19535/j.1001-1579.2021.02.006
Chen M B, Bai F F, Song W J, et al. Multi-point internal short circuit and physical field variation of Li-ion battery. Battery Bimon, 2021, 51(2): 131 doi: 10.19535/j.1001-1579.2021.02.006
|
[11] |
Zheng Y J, Ouyang M G, Lu L G, et al. On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 1. Equalization based on remaining charging capacity estimation. J Power Sources, 2014, 247: 676
|
[12] |
王淮斌, 李陽, 王欽正, 等. 三元鋰離子動力電池熱失控及蔓延特性實驗研究. 工程科學學報, 2021, 43(5):663
Wang H B, Li Y, Wang Q Z, et al. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse. Chin J Eng, 2021, 43(5): 663
|
[13] |
王震坡, 袁昌貴, 李曉宇. 新能源汽車動力電池安全管理技術挑戰與發展趨勢分析. 汽車工程, 2020, 42(12):1606 doi: 10.19562/j.chinasae.qcgc.2020.12.002
Wang Z P, Yuan C G, Li X Y. An analysis on challenge and development trend of safety management technologies for traction battery in new energy vehicles. Automot Eng, 2020, 42(12): 1606 doi: 10.19562/j.chinasae.qcgc.2020.12.002
|
[14] |
張亞軍, 王賀武, 馮旭寧, 等. 動力鋰離子電池熱失控燃燒特性研究進展. 機械工程學報, 2019, 55(20):17
Zhang Y J, Wang H W, Feng X N, et al. Research progress on thermal runaway combustion characteristics of power lithiumion batteries. J Mech Eng, 2019, 55(20): 17
|
[15] |
Feng X N, Pan Y, He X M, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. J Energy Storage, 2018, 18: 26 doi: 10.1016/j.est.2018.04.020
|
[16] |
Kong X D, Zheng Y J, Ouyang M G, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs. J Power Sources, 2018, 395: 358 doi: 10.1016/j.jpowsour.2018.05.097
|
[17] |
Kenney B, Darcovich K, MacNeil D D, et al. Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules. J Power Sources, 2012, 213: 391 doi: 10.1016/j.jpowsour.2012.03.065
|
[18] |
Dubarry M, Truchot C, Cugnet M, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations. J Power Sources, 2011, 196(23): 10328
|
[19] |
郭自清, 熊慶, 梁博航, 等. 基于橋接電容電流特性的鋰離子電池組一致性檢測方法. 高電壓技術, 2022, 48(5):1933
Guo Z Q, Xiong Q, Liang B H, et al. Consistency detection approach for lithium-ion battery pack based on current characteristics of bridging capacitors. High Voltage Engineering, 2022, 48(5): 1933
|
[20] |
陳晨, 朱瑞銀. 應用于特種設備的鋰離子電池一致性仿真研究. 電子測試, 2020(24):43 doi: 10.3969/j.issn.1000-8519.2020.24.015
Chen C, Zhu R Y. Research on consistency simulation of lithium ion battery applied to special equipment. Electron Test, 2020(24): 43 doi: 10.3969/j.issn.1000-8519.2020.24.015
|
[21] |
來鑫, 秦超, 鄭岳久, 等. 基于恒流充電曲線電壓特征點的鋰離子電池自適應容量估計方法. 汽車工程, 2019, 41(1):1 doi: 10.19562/j.chinasae.qcgc.2019.01.001
Lai X, Qin C, Zheng Y J, et al. An adaptive capacity estimation scheme for lithium-ion battery based on voltage characteristic points in constant-current charging curve. Automot Eng, 2019, 41(1): 1 doi: 10.19562/j.chinasae.qcgc.2019.01.001
|
[22] |
Zheng Y J, Lu L G, Han X B, et al. LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation. J Power Sources, 2013, 226: 33 doi: 10.1016/j.jpowsour.2012.10.057
|
[23] |
胡曉松, 唐小林. 電動車輛鋰離子動力電池建模方法綜述. 機械工程學報, 2017, 53(16):20 doi: 10.3901/JME.2017.16.020
Hu X S, Tang X L. Review of modeling techniques for lithium-ion traction batteries in electric vehicles. J Mech Eng, 2017, 53(16): 20 doi: 10.3901/JME.2017.16.020
|
[24] |
Wang J, Liu P, Hicks-Garner J, et al. Cycle-life model for graphite-LiFePO4 cells. J Power Sources, 2011, 196(8): 3942 doi: 10.1016/j.jpowsour.2010.11.134
|
[25] |
Zhou L, Zheng Y J, Ouyang M G, et al. A study on parameter variation effects on battery packs for electric vehicles. J Power Sources, 2017, 364: 242 doi: 10.1016/j.jpowsour.2017.08.033
|