<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 44 Issue 6
May  2022
Turn off MathJax
Article Contents
LIN Hai, YANG Ren-shu, LI Yong-liang, LU Bin, XU Bin, FAN Zi-yi, LI Jian-nan. Application of short-wall continuous mining and continuous backfilling cemented-fill mining technology[J]. Chinese Journal of Engineering, 2022, 44(6): 981-992. doi: 10.13374/j.issn2095-9389.2021.05.13.003
Citation: LIN Hai, YANG Ren-shu, LI Yong-liang, LU Bin, XU Bin, FAN Zi-yi, LI Jian-nan. Application of short-wall continuous mining and continuous backfilling cemented-fill mining technology[J]. Chinese Journal of Engineering, 2022, 44(6): 981-992. doi: 10.13374/j.issn2095-9389.2021.05.13.003

Application of short-wall continuous mining and continuous backfilling cemented-fill mining technology

doi: 10.13374/j.issn2095-9389.2021.05.13.003
More Information
  • Corresponding author: E-mail: b20200019@xs.ustb.edu.cn
  • Received Date: 2021-05-13
    Available Online: 2021-07-20
  • Publish Date: 2022-06-25
  • The development and utilization of coal resources have caused serious surface collapse and destruction and ecological, environmental pollution. As the main method of green mining, backfill mining fills gangue and other wastes into the goaf to control the surface subsidence and processing coal gangue, which has broad application prospects. Aiming at the practical needs and significance of reducing gangue emission and controlling surface subsidence caused by high-intensity mining in fragile environmental areas in western China, this work proposed a short-wall continuous mining and continuous backfilling (CMCB) cemented-fill mining technology. On the basis of studying the mining principle of the short-wall CMCB cemented-fill mining technology, this work introduced layouts of this technology’s working face and mining and filling crafts according to the longwall working face and the short-wall working face, respectively, realizing the parallel operation of mining and backfilling by skip mining. The mineral composition, microscopic characteristics, and gradation characteristics of various filling materials were analyzed, and the strength and flow characteristics of the cemented filling materials under different proportions were tested on the basis of a filling material test combined with pipeline transportation characteristics and filling methods of the coal mine cemented-fill slurry. The composition and overall design ideas of the filling system of this technology were put forward, including four parts: slurry preparation system, pipeline transportation system, monitoring system, and working face filling system. The on-site test showed that the short-wall CMCB cemented-filling mining technology achieves a compression ratio of more than 98% in a 5-m thick near-level coal seam. The maximum roof subsidence is 102 mm, and the maximum surface subsidence is 8.9 mm. 245000 t of gangue were used, and a good application effect was observed.

     

  • loading
  • [1]
    中礦(北京)煤炭產業景氣指數研究課題組. 2020–2021年中國煤炭產業經濟形勢研究報告. 中國煤炭, 2021, 47(3):53 doi: 10.3969/j.issn.1006-530X.2021.03.008

    Research Group of China Mining. Research report on economic situation of China's coal industry from 2020 to 2021. China Coal, 2021, 47(3): 53 doi: 10.3969/j.issn.1006-530X.2021.03.008
    [2]
    周楠, 姚依南, 宋衛劍, 等. 煤礦矸石處理技術現狀與展望. 采礦與安全工程學報, 2020, 37(1):136

    Zhou N, Yao Y N, Song W J, et al. Present situation and prospect of coal gangue treatment technology. J Min Saf Eng, 2020, 37(1): 136
    [3]
    劉建功, 李新旺, 何團. 我國煤礦充填開采應用現狀與發展. 煤炭學報, 2020, 45(1):141

    Liu J G, Li X W, He T. Application status and prospect of backfill mining in Chinese coal mines. J China Coal Soc, 2020, 45(1): 141
    [4]
    胡炳南, 劉鵬亮, 崔鋒, 等. 我國充填采煤技術回顧及發展現狀. 煤炭科學技術, 2020, 48(9):39

    Hu B N, Liu P L, Cui F, et al. Review and development status of backfill coal mining technology in China. Coal Sci Technol, 2020, 48(9): 39
    [5]
    973計劃(2013CB227900)“西部煤炭高強度開采下地質災害防治與環境保護基礎研究”項目組. 西部煤炭高強度開采下地質災害防治理論與方法研究進展. 煤炭學報, 2017, 42(2):267

    Research Group of National Key Basic Research Program of China(2013CB227900) (Basic Study on Geological Hazard Prevention and Environmental Protection in High Intensity Mining of Western Coal Area). Theory and method research of geological diaster prevention on high-intensity coal exloitation in the west areas. J China Coal Soc, 2017, 42(2): 267
    [6]
    范立民, 馬雄德, 李永紅, 等. 西部高強度采煤區礦山地質災害現狀與防控技術. 煤炭學報, 2017, 42(2):276

    Fan L M, Ma X D, Li Y H, et al. Geological disasters and control technology in high intensity mining area of western China. J China Coal Soc, 2017, 42(2): 276
    [7]
    郭文兵, 白二虎, 趙高博. 高強度開采覆巖地表破壞及防控技術現狀與進展. 煤炭學報, 2020, 45(2):509

    Guo W B, Bai E H, Zhao G B. Current status and progress on overburden and surface damage and prevention technology of high-intensity mining. J China Coal Soc, 2020, 45(2): 509
    [8]
    徐俊明, 張吉雄, 黃艷利, 等. 充填綜采矸石-粉煤灰壓實變形特性試驗研究及應用. 采礦與安全工程學報, 2011, 28(1):158 doi: 10.3969/j.issn.1673-3363.2011.01.030

    Xu J M, Zhang J X, Huang Y L, et al. Experimental research on the compress deformation characteristic of waste-flyash and its application in backfilling fully mechanized coal mining technology. J Min Saf Eng, 2011, 28(1): 158 doi: 10.3969/j.issn.1673-3363.2011.01.030
    [9]
    李猛, 張吉雄, 繆協興, 等. 固體充填體壓實特征下巖層移動規律研究. 中國礦業大學學報, 2014, 43(6):969

    Li M, Zhang J X, Miao X X, et al. Strata movement under compaction of solid backfill body. J China Univ Min Technol, 2014, 43(6): 969
    [10]
    張吉雄, 李劍, 安泰龍, 等. 矸石充填綜采覆巖關鍵層變形特征研究. 煤炭學報, 2010, 35(3):357

    Zhang J X, Li J, An T L, et al. Deformation characteristic of key stratum overburden by raw waste backfilling with fully-mechanized coal minning technology. J China Coal Soc, 2010, 35(3): 357
    [11]
    戚庭野, 馮國瑞, 郭育霞, 等. 煤礦膏體充填材料性能隨齡期變化的試驗研究. 采礦與安全工程學報, 2015, 32(1):42

    Qi T Y, Feng G R, Guo Y X, et al. Experimental study on the changes of coal paste backfilling material performance during hydration process. J Min Saf Eng, 2015, 32(1): 42
    [12]
    馮國瑞, 賈學強, 郭育霞, 等. 矸石-廢棄混凝土膠結充填材料配比的試驗研究. 采礦與安全工程學報, 2016, 33(6):1072

    Feng G R, Jia X Q, Guo Y X, et al. Study on mixture ratio of gangue-waste concrete cemented paste backfill. J Min Saf Eng, 2016, 33(6): 1072
    [13]
    吳疆宇, 馮梅梅, 郁邦永, 等. 連續級配廢石膠結充填體強度及變形特性試驗研究. 巖土力學, 2017, 38(1):101

    Wu J Y, Feng M M, Yu B Y, et al. Experimental study of strength and deformation characteristics of cemented waste rock backfills with continuous gradation. Rock Soil Mech, 2017, 38(1): 101
    [14]
    周茜, 徐懷兵, 劉娟紅. 高水充填材料失穩破壞特征研究及性能改善. 煤炭學報, 2017, 42(5):1123

    Zhou Q, Xu H B, Liu J H. Unstable failure characteristics and performance improvement of water-high filling materials. J China Coal Soc, 2017, 42(5): 1123
    [15]
    馮光明, 丁玉, 朱紅菊, 等. 礦用超高水充填材料及其結構的實驗研究. 中國礦業大學學報, 2010, 39(6):813

    Feng G M, Ding Y, Zhu H J, et al. Experimental research on a superhigh-water packing material for mining and its micromorphology. J China Univ Min Technol, 2010, 39(6): 813
    [16]
    丁玉, 馮光明, 王成真. 超高水充填材料基本性能試驗研究. 煤炭學報, 2011, 36(7):1087

    Ding Y, Feng G M, Wang C Z. Experimental research on basic properties of superhigh-water packing material. J China Coal Soc, 2011, 36(7): 1087
    [17]
    王旭鋒, 孫春東, 張東升, 等. 超高水材料充填膠結體工程特性試驗研究. 采礦與安全工程學報, 2014, 31(6):852

    Wang X F, Sun C D, Zhang D S, et al. Experimental study on engineering characteristics of super-high water filling body. J Min Saf Eng, 2014, 31(6): 852
    [18]
    繆協興, 張吉雄. 井下煤矸分離與綜合機械化固體充填采煤技術. 煤炭學報, 2014, 39(8):1424

    Miao X X, Zhang J X. Key technologies of integration of coal mining-gangue washing-backfilling and coal mining. J China Coal Soc, 2014, 39(8): 1424
    [19]
    鄧雪杰, 張吉雄, 周楠, 等. 特厚煤層長壁巷式膠結充填開采技術研究與應用. 采礦與安全工程學報, 2014, 31(6):857

    Deng X J, Zhang J X, Zhou N, et al. The research and application of longwall-roadway cemented backfilling mining technology in extra-thick coal seam. J Min Saf Eng, 2014, 31(6): 857
    [20]
    張吉雄, 張強, 巨峰, 等. 深部煤炭資源采選充綠色化開采理論與技術. 煤炭學報, 2018, 43(2):377

    Zhang J X, Zhang Q, Ju F, et al. Theory and technique of greening mining integrating mining, separating and backfilling in deep coal resources. J China Coal Soc, 2018, 43(2): 377
    [21]
    張吉雄, 李猛, 鄧雪杰, 等. 含水層下矸石充填提高開采上限方法與應用. 采礦與安全工程學報, 2014, 31(2):220

    Zhang J X, Li M, Deng X J, et al. Method and application of extending mining upper limit under aquifer by gangue backfill mining. J Min Saf Eng, 2014, 31(2): 220
    [22]
    賈林剛, 張華興. 長壁充填開采充填體穩定性研究. 采礦與安全工程學報, 2019, 36(6):1234

    Jia L G, Zhang H X. Stability of backfill in long wall filling mining. J Min Saf Eng, 2019, 36(6): 1234
    [23]
    馮光明, 王成真, 李鳳凱, 等. 超高水材料袋式充填開采研究. 采礦與安全工程學報, 2011, 28(4):602 doi: 10.3969/j.issn.1673-3363.2011.04.019

    Feng G M, Wang C Z, Li F K, et al. Research on bag-type filling mining with super-high-water material. J Min Saf Eng, 2011, 28(4): 602 doi: 10.3969/j.issn.1673-3363.2011.04.019
    [24]
    周華強, 侯朝炯, 孫希奎, 等. 固體廢物膏體充填不遷村采煤. 中國礦業大學學報, 2004, 33(2):154 doi: 10.3321/j.issn:1000-1964.2004.02.007

    Zhou H Q, Hou C J, Sun X K, et al. Solid waste paste filling for none-village-relocation coal mining. J China Univ Min Technol, 2004, 33(2): 154 doi: 10.3321/j.issn:1000-1964.2004.02.007
    [25]
    許家林, 朱衛兵, 王曉振. 基于關鍵層位置的導水裂隙帶高度預計方法. 煤炭學報, 2012, 37(5):762

    Xu J L, Zhu W B, Wang X Z. New method to predict the height of fractured water-conducting zone by location of key strata. J China Coal Soc, 2012, 37(5): 762
    [26]
    胡炳南, 張文海, 高慶潮, 等. 矸石充填巷式開采永久煤柱試驗研究. 煤炭科學技術, 2006, 34(11):46 doi: 10.3969/j.issn.0253-2336.2006.11.016

    Hu B N, Zhang W H, Gao Q C, et al. Test research on permanent pillar mining with coal refuse backfilling. Coal Sci Technol, 2006, 34(11): 46 doi: 10.3969/j.issn.0253-2336.2006.11.016
    [27]
    Yu Y H, Ma L Q. Application of roadway backfill mining in water-conservation coal mining: A case study in northern Shaanxi, China. Sustainability, 2019, 11(13): 3719 doi: 10.3390/su11133719
    [28]
    路彬, 張新國, 李飛, 等. 短壁矸石膠結充填開采技術與應用. 煤炭學報, 2017, 42(增刊1): 7

    Lu B, Zhang X G, Li F, et al. Study and application of short-wall gangue cemented backfilling technology. J China Coal Soc, 2017, 42(Suppl 1): 7
    [29]
    張云, 曹勝根, 來興平, 等. 短壁塊段式充填采煤覆巖導水裂隙發育機理及控制研究. 采礦與安全工程學報, 2019, 36(6):1086

    Zhang Y, Cao S G, Lai X P, et al. Study on the development mechanism and control of water-conducting fractures in short-wall block backfill mining. J Min Saf Eng, 2019, 36(6): 1086
    [30]
    馬立強, 許玉軍, 張東升, 等. 壁式連采連充保水采煤條件下隔水層與地表變形特征. 采礦與安全工程學報, 2019, 36(1):30

    Ma L Q, Xu Y J, Zhang D S, et al. Characteristics of aquiclude and surface deformation in continuous mining and filling with wall system for water conservation. J Min Saf Eng, 2019, 36(1): 30
    [31]
    孫強, 張吉雄, 殷偉, 等. 長壁機械化掘巷充填采煤圍巖結構穩定性及運移規律. 煤炭學報, 2017, 42(2):404

    Sun Q, Zhang J X, Yin W, et al. Study of stability of surrounding rock and characteristic of overburden strata movement with longwall roadway backfill coal mining. J China Coal Soc, 2017, 42(2): 404
    [32]
    孟毅, 張新國, 曹忠等. 煤礦膏體充填理論與料漿輸送關鍵技術. 徐州: 中國礦業大學出版社, 2010

    Me Y, Zhang X G, Cao Z, et al. Coal Mine Paste Filling Theory and Key Technology of Slurry Transportation. Xuzhou: China University of Mining and Technology Press, 2010
    [33]
    楊寶貴. 煤礦高濃度膠結充填開采技術. 北京: 煤炭工業出版社, 2015

    Yang B G. Coal Mine High-Concentration Cemented Filling Mining Technology. Beijing: China Coal Industry Publishing House, 2015
    [34]
    劉鵬亮, 張華興, 崔鋒, 等. 風積砂似膏體機械化充填保水采煤技術與實踐. 煤炭學報, 2017, 42(1):118

    Liu P L, Zhang H X, Cui F, et al. Technology and practice of mechanized backfill mining for water protection with aeolian sand paste-like. J China Coal Soc, 2017, 42(1): 118
    [35]
    張宗國, 史秀志, 吝學飛. 基于CFD的充填管網參數優化及輸送特性. 中國有色金屬學報, 2019, 29(10):2411

    Zhang Z G, Shi X Z, Lin X F. Parameter optimization and transportation characteristics of backfilling pipe network based on CFD. Chin J Nonferrous Met, 2019, 29(10): 2411
    [36]
    孫萬明, 劉鵬亮, 孫凱華, 等. 榆陽煤礦近水平煤層高充填率充填工藝技術研究. 煤炭技術, 2014, 33(12):23

    Sun W M, Liu P L, Sun K H, et al. Research on flat seam filling technology for high filling ratio in Yuyang coal mine. Coal Technol, 2014, 33(12): 23
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)

    Article views (3767) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164