<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 39 Issue 4
Apr.  2017
Turn off MathJax
Article Contents
MAN Cheng, ZHANG Huan, DONG Chao-fang, YU Qiang, XIAO Kui, LI Xiao-gang. Stress corrosion cracking of 2024-T351 aluminum alloy in SO2 mixed salt spray environment[J]. Chinese Journal of Engineering, 2017, 39(4): 542-549. doi: 10.13374/j.issn2095-9389.2017.04.009
Citation: MAN Cheng, ZHANG Huan, DONG Chao-fang, YU Qiang, XIAO Kui, LI Xiao-gang. Stress corrosion cracking of 2024-T351 aluminum alloy in SO2 mixed salt spray environment[J]. Chinese Journal of Engineering, 2017, 39(4): 542-549. doi: 10.13374/j.issn2095-9389.2017.04.009

Stress corrosion cracking of 2024-T351 aluminum alloy in SO2 mixed salt spray environment

doi: 10.13374/j.issn2095-9389.2017.04.009
  • Received Date: 2016-07-09
  • The stress corrosion cracking of 2024-T351 aluminum alloy was investigated by finite element simulation analysis, scanning electron microscopy/energy dispersive spectrometry, and X-ray photoelectron spectroscopy through SO2 mixed salt spray test. Results indicate that stress corrosion cracking initiates preferentially at the region of stress concentration of the C-ring top for 2024-T351 aluminum alloy. The morphologies of loose corrosion products change from fine rod-like and flocculent to plate-like. Secondary cracks form in the internal corrosion crack after 6 h, when the corrosion time increases to 480 h, and the fractures and cracks in the surface of the C-ring side penetrate the whole sample. The C-ring sample completely breaks after 720 h. The opening crack propagation is a mixed mode of transgranular and intergranular, while the main cracks extend along the normal of the C-ring and the secondary cracks extend mainly along the grain boundaries.

     

  • loading
  • [1]
    Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des, 2014, 56:862
    [2]
    Cui Z Y, Li X G, Xiao K, et al. Exfoliation corrosion behavior of 2Bo6 aluminum alloy in a tropical marine atmosphere. J Mater Eng Perform, 2015, 24(1):296
    [3]
    De La Fuente D, Otero-Huerta E, Morcillo M. Studies of longterm weathering of aluminium in the atmosphere. Corros Sci, 2007, 49(7):3134
    [4]
    Misak H E, Perel V Y, Sabelkin V, et al. Biaxial tension-tension fatigue crack growth behavior of 2024-T3 under ambient air and salt water environments. Eng Fract Mech, 2014, 118:83
    [7]
    Tsai T C, Chuang T H. Atmospheric stress corrosion cracking of a superplastic 7475 aluminum alloy. Metall Mater Trans A, 1996, 27(9):2617
    [8]
    Wang B B, Wang Z Y, Han W, et al. Atmospheric corrosion of aluminium alloy 2024-T3 exposed to salt lake environment in Western China. Corros Sci, 2012, 59:63
    [11]
    Sun S Q, Zheng Q F, Li D F, et al. Exfoliation corrosion of extruded 2024-T4 in the coastal environments in China. Corros Sci, 2011, 53(8):2527
    [12]
    Kermanidis A T, Petroyiannis P V, Pantelakis S G. Fatigue and damage tolerance behaviour of corroded 2024 T351 aircraft aluminum alloy. Theor Appl Fract Mech, 2005, 43(1):121
    [13]
    Lacroix L, Blanc C, Pebere N, et al. Simulating the galvanic coupling between S-Al2 CuMg phase particles and the matrix of 2024 aerospace aluminum alloy. Corros Sci, 2012, 64:213
    [14]
    Burns J T, Larsen J M, Gangloff R P. Driving forces for localized corrosion-to-fatigue crack transition in Al-Zn-Mg-Cu. Fatigue Fract Eng Mater Struct, 2011, 34(10):745
    [15]
    Sheng H, Dong C F, Xiao K, et al. Anodic dissolution of a crack tip at AA2024-T351 in 3.5 wt% NaCl solution. Int J Miner Metall Mater, 2012, 19(10):939
    [16]
    Pidaparti R M, Patel R R. Correlation between corrosion pits and stresses in Al alloys. Mater Lett, 2008, 62(30):4497
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (735) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164