<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 30 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
XU Guangmei, YANG Bingru, QIN Yiqing, ZHANG Wei. Multi-relational Naive Bayesian classifier based on mutual information[J]. Chinese Journal of Engineering, 2008, 30(8): 963-966. doi: 10.13374/j.issn1001-053x.2008.08.025
Citation: XU Guangmei, YANG Bingru, QIN Yiqing, ZHANG Wei. Multi-relational Naive Bayesian classifier based on mutual information[J]. Chinese Journal of Engineering, 2008, 30(8): 963-966. doi: 10.13374/j.issn1001-053x.2008.08.025

Multi-relational Naive Bayesian classifier based on mutual information

doi: 10.13374/j.issn1001-053x.2008.08.025
  • Received Date: 2007-07-24
  • Rev Recd Date: 2007-12-17
  • Available Online: 2021-08-06
  • To improve the accuracy of multi-relational Naive Bayesian classifiers, the existing pruning methods were discussed and the attribute filter criterion was upgraded based on mutual information to deal with multi-relational data directly. On the basis of the tuple ID propagation method and counting methods towards tuple, the filter method based on extended mutual information was given, and a multi-relational Naive Bayesian classifier based on mutual information (MI-MRNBC) was implemented. Experimental results show that, in a multi-relational domain, with the help of the attribute filter based on extended mutual information, the classifier can give a better accuracy without the increase of time complexity. In extraordinary instances, the multi-relational classification degenerates into a single relational one, which extremely decreases the cost of classification.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (137) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164