<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 27 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
TENG Wenyan, QIAO Chunsheng, HU Yuting. Intelligent design method for soft rock engineering supporting based on tow layer support vector machines[J]. Chinese Journal of Engineering, 2005, 27(4): 395-398. doi: 10.13374/j.issn1001-053x.2005.04.003
Citation: TENG Wenyan, QIAO Chunsheng, HU Yuting. Intelligent design method for soft rock engineering supporting based on tow layer support vector machines[J]. Chinese Journal of Engineering, 2005, 27(4): 395-398. doi: 10.13374/j.issn1001-053x.2005.04.003

Intelligent design method for soft rock engineering supporting based on tow layer support vector machines

doi: 10.13374/j.issn1001-053x.2005.04.003
  • Received Date: 2004-03-18
  • Rev Recd Date: 2004-10-10
  • Available Online: 2021-08-17
  • A machine learning algorithm——Support Vector Machines (SVM) was introduced into the field of soft rock engineering supporting design. An improved Support Vector Machines Regression (SVR) algorithm was presented to meet the needs of this problem and the corresponding calculation code was programmed, It is concluded that a high degree of prediction accuracy and a very good generalization can be obtained with small quantity of learning samples using this algorithm from the calculated results of an engineering instance. It can avoid the overfitting problem of artificial neural network (ANN) which brings the difficulty in determining the parameters of ANN. It facilitates users to a great extent and provides a new way in the supporting design of similar engineering.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (199) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164