Determination method and engineering application of reasonable installation timing of the initial ground support
-
摘要: 將巖體破壞接近度指標(FAI)引入隧道支護設計,明確了圍巖臨界支護時機判別準則。基于有限差分數值計算程序,合理考慮巖體峰后應變軟化特性,建立了一種隧道最優支護時機確定方法。通過算例分析,定量探討了表征支護時機的重要參數,從工程角度闡釋了支護時機的本質意義。結果表明:巖體地質強度指標GSI由75減小至25時,支護時機提前8.32 m;巖石材料常數mi由20減小至10時,支護時機提前5.85 m;巖石單軸抗壓強度σci由80 MPa減小至40 MPa時,支護時機提前3.74 m;工程擾動參數D由0增加至0.8時,支護時機提前7.44 m。將建立方法在玉渡山隧道工程中進行應用,計算出研究區段的支護時機為3.3 m,經現場監測表明該方法有效、可行。該研究成果可為隧道支護體系的量化設計提供參考。Abstract: The surrounding rock support is a key issue in tunnel construction. The reasonable supporting time can not only ensure the safety of tunnel construction but also achieve the purpose of saving support costs. Currently, the support time determination mainly depends on on-site monitoring information and engineering experience, and there is still a lack of effective quantitative design methods. To overcome this deficiency, systematic research was conducted based on the case project of the Yudushan tunnel in the Yan-Chong expressway. The failure approach index was introduced in the tunnel support design, and the criterion of critical surrounding rock supporting time was defined. Based on the finite difference numerical calculation program and reasonable consideration of the post-peak strain softening characteristics of the rock mass, a method for determining an optimal tunnel supporting time was established. Through the analysis of numerical examples, the important parameters characterizing the supporting time were discussed quantitatively, and the essential significance of the supporting time was revealed from the engineering perspective. The results show that the supporting time increases by 8.32 m as the geological strength index is reduced from 75 to 25; the supporting time increases by 5.85 m as the intact rock material property, mi, is reduced from 20 to 10; the supporting time increases 3.74 m as the uniaxial compressive strength of rock, σci, is reduced from 80 to 40 MPa; the supporting time increases by 7.44 m as the engineering disturbance coefficient, D, is increased from 0 to 0.8. The proposed method was applied in the Yudushan tunnel project. The supporting time of the research section is 3.3 m. Field monitoring shows that the method is effective and feasible and provides a reference for the tunnel support system’s quantitative design.
-
表 1 不同工況的圍巖參數
Table 1. Rock mass parameters for various cases
Cases cp/MPa φp/(°) cr/MPa φr/(°) γp*/10?3 GSIp = 55 I 1.505 40.85 1.018 31.20 2.5248 II 1.388 38.43 0.921 28.88 2.6414 III 1.243 34.98 0.798 25.73 2.7444 GSIp = 45 I 1.261 36.94 0.958 30.07 9.1190 II 1.151 34.53 0.866 27.79 9.7502 III 1.012 31.18 0.748 24.69 10.3380 GSIp = 35 I 1.063 33.01 0.906 29.08 40.3000 II 0.965 30.66 0.818 26.83 42.3500 III 0.839 27.44 0.706 23.78 43.8960 Note: I, II, and III correspond to the cases of mi = 20, mi = 15, and mi = 10, respectively. 259luxu-164 參考文獻
[1] Chen J X, Liu W W, Chen L J, et al. In-situ experimental study on large-deformation control and reasonable support forms for a large-span highway tunnel in chlorite schist. China J Highw Transp, 2020, 33(12): 212 doi: 10.3969/j.issn.1001-7372.2020.12.017陳建勛, 劉偉偉, 陳麗俊, 等. 綠泥石片巖地層大跨度公路隧道大變形控制及合理支護形式現場試驗. 中國公路學報, 2020, 33(12):212 doi: 10.3969/j.issn.1001-7372.2020.12.017 [2] Zhang D L, Fang H C, Chen L P, et al. Stiffness design theory for tunnel-support system. Chin J Rock Mech Eng, 2021, 40(4): 649張頂立, 方黃城, 陳立平, 等. 隧道支護結構體系的剛度設計理論. 巖石力學與工程學報, 2021, 40(4):649 [3] Tian X X, Song Z P, Zhang Y W. Monitoring and reinforcement of landslide induced by tunnel excavation: A case study from Xiamaixi tunnel. Tunn Undergr Space Technol, 2021, 110: 103796 doi: 10.1016/j.tust.2020.103796 [4] Sun Z Y, Zhang D L, Fang Q, et al. Synergistic optimization design method for tunnel support structure system and its application. Chin J Geotech Eng, 2021, 43(3): 530孫振宇, 張頂立, 房倩, 等. 隧道支護結構體系協同優化設計方法及其應用. 巖土工程學報, 2021, 43(3):530 [5] Su Y, Su Y H, Zhao M H, et al. Tunnel stability analysis in weak rocks using the convergence confinement method. Rock Mech Rock Eng, 2021, 54(2): 559 doi: 10.1007/s00603-020-02304-y [6] Kolymbas D. Tunnelling and Tunnel Mechanics: A Rational Approach to Tunnelling. Heidelberg: Springer Press, 2005 [7] Feng J M, Yan C W, Ye L, et al. Evaluation of installation timing of initial ground support for large-span tunnel in hard rock. Tunn Undergr Space Technol, 2019, 93: 103087 doi: 10.1016/j.tust.2019.103087 [8] Zhang J H, Wang R K, Zhou Z, et al. Optimum support time of brittle underground cavern based on time-dependent deformation. Chin J Geotech Eng, 2017, 39(10): 1908 doi: 10.11779/CJGE201710020張建海, 王仁坤, 周鐘, 等. 基于時效變形的脆性圍巖最優支護時機研究. 巖土工程學報, 2017, 39(10):1908 doi: 10.11779/CJGE201710020 [9] Sun Z Y, Zhang D L, Fang Q, et al. Spatial and temporal evolution characteristics of interaction between primary support and tunnel surrounding rock. Chin J Rock Mech Eng, 2017, 36(Suppl 2): 3943孫振宇, 張頂立, 房倩, 等. 隧道初期支護與圍巖相互作用的時空演化特性. 巖石力學與工程學報, 2017, 36(增刊2): 3943 [10] Zhang Y J, Su K, Qian Z D, et al. Improved longitudinal displacement profile and initial support for tunnel excavation. KSCE J Civ Eng, 2019, 23(6): 2746 doi: 10.1007/s12205-019-0411-9 [11] Zhang Y J, Su K, Zhou L, et al. Estimation of ground support installation time based on the tunnel longitudinal displacement of convergence-confinement method. Rock Soil Mech, 2017, 38(Suppl 1): 471張妍珺, 蘇凱, 周利, 等. 基于收斂-約束法的隧洞縱向變形演化規律研究與支護時機估算. 巖土力學, 2017, 38(增刊1): 471 [12] Zhang Y J, Su K, Zhu H Z, et al. Installation time of an initial support for tunnel excavation upon the safety factors of surrounding rock. Appl Sci, 2020, 10(16): 5653 doi: 10.3390/app10165653 [13] Su K, Zhang Y J, Cui J P, et al. Installation time of ground support during tunnel excavation: A novel graph methodology. KSCE J Civ Eng, 2020, 24(12): 3866 doi: 10.1007/s12205-020-1079-x [14] Su K, Zhang Y J, Wu H G, et al. Evolution of surrounding rock safety factor and support installation time during tunnel excavation. Chin J Rock Mech Eng, 2019, 38(Suppl 1): 2964蘇凱, 張妍珺, 伍鶴皋, 等. 隧洞開挖過程中圍巖安全系數演化特征與支護時機選擇方法研究. 巖石力學與工程學報, 2019, 38(增刊1): 2964 [15] Yang J P, Chen W Z, Guo X H. Effect of supporting time on stability of small spacing roadway tunnel. Rock Soil Mech, 2008, 29(2): 483 doi: 10.3969/j.issn.1000-7598.2008.02.037楊建平, 陳衛忠, 郭小紅. 小凈距公路隧道支護時機對圍巖穩定性影響研究. 巖土力學, 2008, 29(2):483 doi: 10.3969/j.issn.1000-7598.2008.02.037 [16] Cui L, Zheng J J, Zhang R J, et al. Study of support pressure and surrounding rock deformation of a circular tunnel with an elastoplastic softening model. Rock Soil Mech, 2014, 35(3): 717崔嵐, 鄭俊杰, 章榮軍, 等. 彈塑性軟化模型下隧洞圍巖變形與支護壓力分析. 巖土力學, 2014, 35(3):717 [17] Zhang C Q, Zhou H, Feng X T. Stability assessment of rockmass engineering based on failure approach index. Rock Soil Mech, 2007, 28(5): 888 doi: 10.3969/j.issn.1000-7598.2007.05.008張傳慶, 周輝, 馮夏庭. 基于破壞接近度的巖土工程穩定性評價. 巖土力學, 2007, 28(5):888 doi: 10.3969/j.issn.1000-7598.2007.05.008 [18] Pei F. Mechanical Properties of Rock in Deep Stratum and Analysis and Control of Shaft Surrounding Rock Stability in Shaling Gold Mine [Dissertation]. Beijing: University of Science and Technology Beijing, 2020裴峰. 紗嶺金礦深部地層巖體力學性能與深豎井圍巖穩定性分析及控制[學位論文]. 北京: 北京科技大學, 2020 [19] Zhang C Q, Zhou H, Feng X T. An index for estimating the stability of brittle surrounding rock mass: FAI and its engineering application. Rock Mech Rock Eng, 2011, 44(4): 401 doi: 10.1007/s00603-011-0150-9 [20] Sun Z Y. The Synergetic Principle and Design Method of Tunnel Support System [Dissertation]. Beijing: Beijing Jiaotong University, 2020孫振宇. 隧道支護體系協同作用原理與設計方法[學位論文]. 北京: 北京交通大學, 2020 [21] Wang D Y, Tang H, Yin X T, et al. Preliminary study on the progressive failure of tunnel-type anchorage based on strain-softening theory. Chin J Rock Mech Eng, 2019, 38(Suppl 2): 3448王東英, 湯華, 尹小濤, 等. 基于應變軟化的隧道錨漸進破壞過程探究. 巖石力學與工程學報, 2019, 38(增刊2): 3448 [22] Jiang A N, Zhang Q, Xu M F, et al. Analysis of improved zone safety index of tunnel surrounding rock based on hoek-brown criterion. China J Highw Transp, 2020, 33(7): 135 doi: 10.3969/j.issn.1001-7372.2020.07.014姜諳男, 張權, 許夢飛, 等. 基于Hoek-Brown準則的隧道圍巖改進單元安全度分析. 中國公路學報, 2020, 33(7):135 doi: 10.3969/j.issn.1001-7372.2020.07.014 [23] Zhao X G, Cai M. Influence of plastic shear strain and confinement-dependent rock dilation on rock failure and displacement near an excavation boundary. Int J Rock Mech Min Sci, 2010, 47(5): 723 doi: 10.1016/j.ijrmms.2010.04.003 [24] Hoek E, Carranza T C, Corkum B. Hoek-Brown failure criterion—2002 edition // Proceedings of the North American Rock Mechanics Society NARMS-TAC. Toronto, 2002: 267 [25] Cai M, Kaiser P K, Tasaka Y, et al. Determination of residual strength parameters of jointed rock masses using the GSI system. Int J Rock Mech Min Sci, 2007, 44(2): 247 doi: 10.1016/j.ijrmms.2006.07.005 [26] Hoek E, Diederichs M S. Empirical estimation of rock mass modulus. Int J Rock Mech Min Sci, 2006, 43(2): 203 doi: 10.1016/j.ijrmms.2005.06.005 [27] Wang F Y, Qian D L. Difference solution for a circular tunnel excavated in strain-softening rock mass considering decayed confinement. Tunn Undergr Space Technol, 2018, 82: 66 doi: 10.1016/j.tust.2018.08.001 [28] Hoek E, Brown E T. Practical estimates of rock mass strength. Int J Rock Mech Min Sci, 1997, 34(8): 1165 doi: 10.1016/S1365-1609(97)80069-X [29] He C, Li Y L, Lin G. 3D FEM numerical analysis for the whole construction process of twin-bore tunnel. China Railw Sci, 2005, 26(2): 34 doi: 10.3321/j.issn:1001-4632.2005.02.007何川, 李永林, 林剛. 連拱隧道施工全過程三維有限元分析. 中國鐵道科學, 2005, 26(2):34 doi: 10.3321/j.issn:1001-4632.2005.02.007 [30] Yu L Y, Li S C, Xu B S. Finite difference analysis for construction optimization of little distance subsea tunnels in Qingdao city. Chin J Rock Mech Eng, 2009, 28(Suppl 2): 3564蔚立元, 李術才, 徐幫樹. 青島小間距海底隧道施工優化的有限差分分析. 巖石力學與工程學報, 2009, 28(增刊2): 3564 [31] Liu X J, Zhang Y X. Analysis of reasonable excavation sequence and stress characteristics of portal section of shallow tunnel with unsymmetrical loadings. Chin J Rock Mech Eng, 2011, 30(Suppl 1): 3066劉小軍, 張永興. 淺埋偏壓隧道洞口段合理開挖工序及受力特征分析. 巖石力學與工程學報, 2011, 30(增刊1): 3066 [32] Li S C, Zhu W S, Chen W Z, et al. Application of elasto-plastic large displacement finite element method to the study of deformation prediction of soft rock tunnel. Chin J Rock Mech Eng, 2002, 21(4): 466 doi: 10.3321/j.issn:1000-6915.2002.04.002李術才, 朱維申, 陳衛忠, 等. 彈塑性大位移有限元方法在軟巖隧道變形預估系統研究中的應用. 巖石力學與工程學報, 2002, 21(4):466 doi: 10.3321/j.issn:1000-6915.2002.04.002 [33] Ministry of Transport of the People’s Republic of China. JTG/T3660—2020 Code for Construction Technique of Highway Tunnel. Beijing: China Communications Press, 2020中華人民共和國交通運輸部. JTG/T3660—2020公路隧道施工技術規范. 北京: 人民交通出版社, 2020