<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

非氧化物陶瓷氧化動力學的研究現狀與進展

王恩會 楊亞錕 侯新梅

王恩會, 楊亞錕, 侯新梅. 非氧化物陶瓷氧化動力學的研究現狀與進展[J]. 工程科學學報, 2022, 44(4): 654-663. doi: 10.13374/j.issn2095-9389.2021.05.29.002
引用本文: 王恩會, 楊亞錕, 侯新梅. 非氧化物陶瓷氧化動力學的研究現狀與進展[J]. 工程科學學報, 2022, 44(4): 654-663. doi: 10.13374/j.issn2095-9389.2021.05.29.002
WANG En-hui, YANG Ya-kun, HOU Xin-mei. Current research and development on the oxidation kinetics of nonoxide ceramics[J]. Chinese Journal of Engineering, 2022, 44(4): 654-663. doi: 10.13374/j.issn2095-9389.2021.05.29.002
Citation: WANG En-hui, YANG Ya-kun, HOU Xin-mei. Current research and development on the oxidation kinetics of nonoxide ceramics[J]. Chinese Journal of Engineering, 2022, 44(4): 654-663. doi: 10.13374/j.issn2095-9389.2021.05.29.002

非氧化物陶瓷氧化動力學的研究現狀與進展

doi: 10.13374/j.issn2095-9389.2021.05.29.002
基金項目: 國家自然科學基金資助項目(52025041,51904021,51974021);中央高校基本科研業務費資助項目(FRF-TP-19-008A1)
詳細信息
    通訊作者:

    E-mail: houxinmeiustb@ustb.edu.cn

  • 中圖分類號: TQ174.75

Current research and development on the oxidation kinetics of nonoxide ceramics

More Information
  • 摘要: 非氧化物陶瓷作為一種性能優異的高溫結構材料,廣泛應用于冶金、化工等高溫行業。在實際應用過程中氧化和應力耦合的服役環境加速了非氧化物陶瓷高溫性能失效最終降低服役壽命,甚至引發安全事故。因此研究非氧化物陶瓷在復雜服役環境下尤其應力條件下的氧化進程尤為重要,建立此條件下的氧化動力學模型是掌握材料實際服役行為規律的有效手段。本文對比了非氧化物陶瓷分別在無應力和應力條件下的氧化機理和相應動力學模型,通過對不同模型的應用對比分析,從量化角度明確了應力對非氧化物陶瓷氧化過程的影響,在此基礎上初步建立了考慮應力的非氧化物陶瓷氧化動力學模型,為進一步揭示非氧化物陶瓷在復雜條件下的服役行為提供科學模型,為提高材料服役壽命提供有效理論指導。

     

  • 圖  1  非氧化物陶瓷氧化過程示意圖。(a)薄塊體材料;(b)球體材料

    Figure  1.  Schematic diagram of the oxidation process of non-oxide ceramics: (a) bulk material; (b) spherical material

    圖  2  D?G模型與應力?氧化耦合模型計算結果和1200 oC下Si片氧化實驗數據的對比圖[7]

    Figure  2.  Comparison of calculation curves using the D?G model and stress-oxidation coupling model and experimental data of the Si wafer oxidized at 1200 oC[7]

    圖  3  氧化膜和基底之間的應力關系示意圖。(a)不受外加載荷作用;(b)受外加載荷作用

    Figure  3.  Schematic diagram of the stress relationship between the oxide film and the substrate: (a) without applied load; (b) with applied load

    圖  4  應力?擴散耦合模型的應用。(a)計算結果和不同溫度下片狀SiC氧化的實驗數據對比圖[33];(b)應力?擴散耦合模型與未考慮內應力的拋物線模型計算結果和1300 ℃下片狀SiC氧化的實驗數據對比圖[33]

    Figure  4.  Application of the stress-diffusion coupling model: (a) comparison of calculation curves using the stress–diffusion coupling model and experimental data of bulk SiC oxidized at different temperatures[33]; (b) comparison of calculation curves using the stress–diffusion coupling model and parabolic model without the stress factor and experimental data of bulk SiC oxidized at 1300 ℃[33]

    圖  5  氧化膜/基底系統和氧化過程的示意圖

    Figure  5.  Schematic diagram of the oxide film/substrate system and oxidation process

    圖  6  應力?氧化耦合模型的應用。(a)模型計算結果和不同溫度下Si片氧化的實驗數據對比圖[7];(b)模型中考慮/不考慮應力因素的計算結果和1100 ℃下Si片氧化實驗數據對比圖[7]

    Figure  6.  Application of the stress-oxidation coupling model: (a) comparison of calculation curves using the stress–oxidation coupling model and the experimental data of bulk Si oxidized at different temperatures[7]; (b) comparison of calculation curves using the stress–oxidation coupling model and parabolic model without the stress factor and the experimental data of bulk Si oxidized at 1100 ℃[7]

    圖  7  不同溫度下片狀SiC氧化產生的內應力預測圖

    Figure  7.  Prediction curves of internal stress produced by oxidation of bulk SiC at different temperatures

    圖  8  RPP模型的應用。(a)模型計算結果和不同溫度下片狀SiC氧化實驗數據的對比圖[33];(b)RPP模型與未考慮內應力的拋物線模型計算結果和1300 ℃下片狀SiC氧化實驗數據的對比圖[33]

    Figure  8.  Application of RPP model: (a) comparison of calculation and prediction curves using the RPP model and experimental data of bulk SiC oxidized at different temperatures[33]; (b) comparison of calculation curves using the RPP model and parabolic model without the stress factor and experimental data of bulk SiC oxidized at 1300 ℃[33]

    圖  9  三點彎曲下的氧化和應力疊加示意圖

    Figure  9.  Schematic diagram of the oxidation and stress superposition under a three-point bending

    圖  10  三點彎曲模型的應用($ \widetilde h $,$ \tau $分別表示量綱為一的氧化膜厚度和量綱為一的時間)。(a)模型計算結果和800 ℃下片狀SiC氧化的實驗數據對比圖[37];(b)施加不同載荷對試樣頂部和底部氧化影響對比圖

    Figure  10.  Application of the three-point bending model ($ \widetilde h $,$ \tau $represent the dimensionless oxide film thickness and dimensionless time, respectively): (a) comparison of calculation curves using the three-point bending model and experimental data of bulk SiC oxidized at 800 ℃[37]; (b) comparison of the influence of different applied loads on the oxidation of the top and bottom of the sample

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wang E H, Chen J H, Hou X M. Current research and latest developments on refractories used as ladle linings. Chin J Eng, 2019, 41(6): 695

    王恩會, 陳俊紅, 侯新梅. 鋼包工作襯用耐火材料的研究現狀及最新進展. 工程科學學報, 2019, 41(6):695
    [2] Zhen Q, Lu F, Song S L, et al. Influence of nano-SiC on the graphitization and oxidation resistance of C/C composites. Chin J Eng, 2017, 39(1): 81

    甄強, 魯飛, 宋紹雷, 等. 納米SiC對C/C復合材料石墨化與抗氧化性能的影響規律. 工程科學學報, 2017, 39(1):81
    [3] Zhao C Y, Wang E H, Hou X M. Research progress on the oxidation mechanism and kinetics of a SiC semiconductor with different crystal surfaces. Chin J Eng, 2021, 43(5): 594

    趙春陽, 王恩會, 侯新梅. SiC半導體不同晶面氧化機理及動力學的研究進展. 工程科學學報, 2021, 43(5):594
    [4] Jander W. Reactions in solid states at high temperature. I. Announcement the rate of reaction in endothermic conversions. Z Anorg Allgem Chem, 1927, 163(1): 1 (Jander W. Reaktionen im festen zustande bei höheren temperaturen. I. Reaktionsgeschwindigkeiten endotherm verlaufender umsetzungen. Z Anorg Allgem Chem, 1927, 163(1): 1)
    [5] Khawam A, Flanagan D R. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B, 2006, 110(35): 17315 doi: 10.1021/jp062746a
    [6] Carter R E. Kinetic model for solid-state reactions. J Chem Phys, 1961, 34(6): 2010 doi: 10.1063/1.1731812
    [7] Deal B E, Grove A S. General relationship for the thermal oxidation of silicon. J Appl Phys, 1965, 36(12): 3770 doi: 10.1063/1.1713945
    [8] Tedmon C S. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe–Cr alloys. J Electrochem Soc, 1966, 113(8): 766 doi: 10.1149/1.2424115
    [9] Opila E J, Jacobson N S. SiO(g) formation from SiC in mixed oxidizing-reducing gases. Oxid Met, 1995, 44(5-6): 527 doi: 10.1007/BF01051042
    [10] Beke D L, Szabó I A, Erdélyi Z, et al. Diffusion-induced stresses and their relaxation. Mater Sci Eng:A, 2004, 387-389: 4 doi: 10.1016/j.msea.2004.01.065
    [11] Bull S J. Modeling of residual stress in oxide scales. Oxid Met, 1998, 49: 1 doi: 10.1023/A:1018822222663
    [12] Clarke D R. Stress generation during high-temperature oxidation of metallic alloys. Curr Opin Solid State Mater Sci, 2002, 6(3): 237 doi: 10.1016/S1359-0286(02)00074-8
    [13] Li X Y, Ermakov A, Amarasinghe V, et al. Oxidation induced stress in SiO2/SiC structures. Appl Phys Lett, 2017, 110(14): 141604 doi: 10.1063/1.4979544
    [14] Chen X Y, Wen Y B, Chen H, et al. Stress–oxidation research progress of easily oxidized materials. Refractories, 2018, 52(1): 75 doi: 10.3969/j.issn.1001-1935.2018.01.019

    陳曉雨, 文鈺斌, 陳浩, 等. 易氧化材料的應力–氧化研究進展. 耐火材料, 2018, 52(1):75 doi: 10.3969/j.issn.1001-1935.2018.01.019
    [15] Dong X L, Fang X F, Feng X, et al. Diffusion and stress coupling effect during oxidation at high temperature. J Am Ceram Soc, 2013, 96(1): 44 doi: 10.1111/jace.12105
    [16] Yue M K, Dong X L, Fang X F, et al. Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature. J Appl Phys, 2018, 123(15): 155301 doi: 10.1063/1.5025149
    [17] Chou K C. A kinetic model for oxidation of Si–Al–O–N materials. J Am Ceram Soc, 2006, 89(5): 1568 doi: 10.1111/j.1551-2916.2006.00959.x
    [18] Chou K C, Hou X M. Kinetics of high-temperature oxidation of inorganic nonmetallic materials. J Am Ceram Soc, 2009, 92(3): 585 doi: 10.1111/j.1551-2916.2008.02903.x
    [19] Wang E H, Chen J H, Hu X J, et al. New perspectives on the gas–solid reaction of α-Si3N4 powder in wet air at high temperature. J Am Ceram Soc, 2016, 99(8): 2699 doi: 10.1111/jace.14274
    [20] Wang X D. The Performance and Structure of AlON and MeAlON Ceramics [Dissertation]. Beijing: University of Science and Technology Beijing, 2001

    王習東. AlON及MeAlON陶瓷的性能與結構[學位論文]. 北京: 北京科技大學, 2001
    [21] Chou K C, Xu K D. A new model for hydriding and dehydriding reactions in intermetallics. Intermetallics, 2007, 15(5-6): 767 doi: 10.1016/j.intermet.2006.10.004
    [22] Hou X M, Chou K C, Li F S. Some new perspectives on oxidation kinetics of SiAlON materials. J Eur Ceram Soc, 2008, 28(6): 1243 doi: 10.1016/j.jeurceramsoc.2007.09.041
    [23] Ramberg C E, Cruciani G, Spear K E, et al. Passive-oxidation kinetics of high-purity silicon carbide from 800 ℃ to 1100 ℃. J Am Ceram Soc, 1996, 79(11): 2897 doi: 10.1111/j.1151-2916.1996.tb08724.x
    [24] Opila E J. Variation of the oxidation rate of silicon carbide with water-vapor pressure. J Am Ceram Soc, 1999, 82(3): 625
    [25] Wang Y G, Ma B S, Li L L, et al. Oxidation behavior of ZrB2?SiC?TaC ceramics. J Am Ceram Soc, 2012, 95(1): 374 doi: 10.1111/j.1551-2916.2011.04945.x
    [26] Nasiri N A, Patra N, Ni N, et al. Oxidation behaviour of SiC/SiC ceramic matrix composites in air. J Eur Ceram Soc, 2016, 36(14): 3293 doi: 10.1016/j.jeurceramsoc.2016.05.051
    [27] Zhou C H. High Temperature Oxidation Behaviors of Several Metallic Materials in the Presence of External Compressive Stress or High Magnetic Field [Dissertation]. Dalian: Dalian University of Technology, 2009

    周長海. 幾種金屬材料在壓應力及強磁場下的高溫氧化[學位論文]. 大連: 大連理工大學, 2009
    [28] Barvosa-Carter W, Aziz M J, Gray L J, et al. Kinetically driven growth instability in stressed solids. Phys Rev Lett, 1998, 81(7): 1445 doi: 10.1103/PhysRevLett.81.1445
    [29] Haftbaradaran H, Gao H J, Curtin W A. A surface locking instability for atomic intercalation into a solid electrode. Appl Phys Lett, 2010, 96(9): 091909 doi: 10.1063/1.3330940
    [30] Xiao X, Liu P, Verbrugge M W, et al. Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries. J Power Sources, 2011, 196(3): 1409 doi: 10.1016/j.jpowsour.2010.08.058
    [31] Coffin H, Bonafos C, Schamm S, et al. Oxidation of Si nanocrystals fabricated by ultralow-energy ion implantation in thin SiO2 layers. J Appl Phys, 2006, 99(4): 044302 doi: 10.1063/1.2171785
    [32] Limarga A M, Wilkinson D S, Weatherly G C. Modeling of oxidation-induced growth stresses. Scr Mater, 2004, 50(12): 1475 doi: 10.1016/j.scriptamat.2004.03.001
    [33] Ogbuji L U J T, Opila E J. A comparison of the oxidation kinetics of SiC and Si3N4. J Electrochem Soc, 1995, 142(3): 925 doi: 10.1149/1.2048559
    [34] Suo Y H, Shen S P. General approach on chemistry and stress coupling effects during oxidation. J Appl Phys, 2013, 114(16): 164905 doi: 10.1063/1.4826530
    [35] Haftbaradaran H, Song J, Curtin W A, et al. Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration. J Power Sources, 2011, 196(1): 361 doi: 10.1016/j.jpowsour.2010.06.080
    [36] Dong X L, Fang X F, Feng X, et al. Oxidation at high temperature under three-point bending considering stress-diffusion coupling effects. Oxid Met, 2016, 86(1-2): 125 doi: 10.1007/s11085-016-9626-z
    [37] Gauthier W, Pailler F, Lamon J, et al. Oxidation of silicon carbide fibers during static fatigue in air at intermediate temperatures. J Am Ceram Soc, 2009, 92(9): 2067 doi: 10.1111/j.1551-2916.2009.03180.x
  • 加載中
圖(10)
計量
  • 文章訪問數:  516
  • HTML全文瀏覽量:  336
  • PDF下載量:  69
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-05-29
  • 網絡出版日期:  2021-08-03
  • 刊出日期:  2022-04-02

目錄

    /

    返回文章
    返回