<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于Pareto的電池容量衰退權衡優化控制策略

林歆悠 葉常青 蘇煉

林歆悠, 葉常青, 蘇煉. 基于Pareto的電池容量衰退權衡優化控制策略[J]. 工程科學學報, 2022, 44(11): 1988-1997. doi: 10.13374/j.issn2095-9389.2021.03.01.005
引用本文: 林歆悠, 葉常青, 蘇煉. 基于Pareto的電池容量衰退權衡優化控制策略[J]. 工程科學學報, 2022, 44(11): 1988-1997. doi: 10.13374/j.issn2095-9389.2021.03.01.005
LIN Xin-you, YE Chang-qing, SU Lian. Pareto-based optimal control strategy for battery capacity decline[J]. Chinese Journal of Engineering, 2022, 44(11): 1988-1997. doi: 10.13374/j.issn2095-9389.2021.03.01.005
Citation: LIN Xin-you, YE Chang-qing, SU Lian. Pareto-based optimal control strategy for battery capacity decline[J]. Chinese Journal of Engineering, 2022, 44(11): 1988-1997. doi: 10.13374/j.issn2095-9389.2021.03.01.005

基于Pareto的電池容量衰退權衡優化控制策略

doi: 10.13374/j.issn2095-9389.2021.03.01.005
基金項目: 福建省自然科學基金資助項目(2020J01449);國家自然科學基金資助項目(51505086);安徽工程大學檢測技術與節能裝置安徽省重點實驗室開放研究基金資助項目(JCKJ2021A04)
詳細信息
    通訊作者:

    E-mail: linxyfzu@126.com

  • 中圖分類號: U461

Pareto-based optimal control strategy for battery capacity decline

More Information
  • 摘要: 由于插電式混合動力汽車電池可以通過電網獲取比較廉價的電量,傳統的控制策略只考慮充分利用電池電量,但忽略了過度使用電池,會加快動力電池容量的衰退。因此,如何權衡充分利用電池電量與抑制電池容量衰退是新的研究重點。基于電池的半經驗衰退模型,引入電池利用程度因子,建立權衡電池容量衰退的能量管理策略。通過Pareto非劣目標域選取合適的權重因子,將多目標優化問題轉化為單目標問題,采用動態規劃算法獲得權重系數全局最優解,通過權衡不同權重下的油耗和電池容量衰退程度選擇最優權重系數。在燃油消耗相當的情況下,當權重系數為0.9時,可有效抑制電池壽命的衰減速度。最后,通過在線等效油耗最小策略仿真與在同一權重下的動態規劃解進行比較來驗證其有效性。

     

  • 圖  1  電池循環次數與放電深度的關系

    Figure  1.  Relationship between the number of battery cycles and the depth of discharge

    圖  2  不同放電倍率下的電池衰退率

    Figure  2.  Battery decay rate at different discharge rates

    圖  3  不同溫度下的鋰電池壽命曲線

    Figure  3.  Lithium-ion battery life curve at different temperatures

    圖  4  不同充電截止電壓下的電池容量衰退

    Figure  4.  Battery capacity degradation at different charge cutoff voltages

    圖  5  電池SOC、溫度和嚴重程度系數關系圖

    Figure  5.  Chart of battery SOC, temperature, and severity coefficient

    圖  6  不同溫度下的嚴重程度系數關系圖。(a)15 ℃;(b)30 ℃;(c)45 ℃;(d)60 ℃

    Figure  6.  Relationship diagram of severity coefficients at different temperatures:(a) 15 ℃;(b) 30 ℃;(c) 45 ℃;(d) 60 ℃

    圖  7  考慮電池容量衰退的權衡控制策略DP求解流程圖

    Figure  7.  Solution flow chart of the trade-off control strategy DP considering battery capacity decline

    圖  8  7個US06工況下不同權重時的DP解

    Figure  8.  DP solutions of seven US06 operating conditions with different weights

    圖  9  不同權重下的SOC曲線。(a)車速示意圖;(b)SOC變化曲線

    Figure  9.  SOC curves under different weights: (a) speed diagram; (b) SOC change curve

    圖  10  不同權重下的仿真結果。(a)充放電倍率;(b)嚴重程度系數

    Figure  10.  Simulation results under different weights: (a) charge and discharge ratio; (b) severity coefficient

    圖  11  不同權重下的仿真結果圖。(a)電機轉矩;(b)發動機轉矩

    Figure  11.  Simulation results under different weights: (a) motor torque; (b) engine torque

    圖  12  不同方法下的SOC曲線

    Figure  12.  SOC curves under different methods

    圖  14  不同方法下的仿真結果對比圖。(a)發動機轉矩;(b)電機轉矩對比

    Figure  14.  Comparison diagram of simulation results under different methods: (a) engine torque; (b) motor torque comparison

    圖  13  不同方法下的仿真結果對比圖。(a)充放電倍率;(b)嚴重程度系數

    Figure  13.  Comparison figure of simulation results under different methods: (a) charge and discharge ratio; (b) severity coefficient

    表  1  7個US06工況下的仿真結果

    Table  1.   Simulation results of 7 US06 operating conditions

    $ \alpha $Fuel consumption/LEffective ampere-hour flux/(A·h)
    13.941257.6
    0.93.983137.9
    0.84.04676.3
    0.74.10246.9
    0.64.15830.1
    0.54.20021
    0.44.25613.3
    0.34.3267.7
    0.24.4102.8
    0.14.4521.4
    下載: 導出CSV

    表  2  不同方法下的仿真結果對比

    Table  2.   Comparison of simulation results under different methods

    Control strategyFuel consumption/LEffective ampere-hour flux/(A·h)The final SOC
    DP3.983137.90.3032
    ECMS4.016143.20.3010
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Biswas A, Emadi A. Energy management systems for electrified powertrains: State-of-the-art review and future trends. IEEE Trans Veh Technol, 2019, 68(7): 6453 doi: 10.1109/TVT.2019.2914457
    [2] Ding Z T, Deng T, Li Z F, et al. SOC estimation of lithium-ion battery based on ampere hour integral and unscented Kalman filter. China Mech Eng, 2020, 31(15): 1823 doi: 10.3969/j.issn.1004-132X.2020.15.009

    丁鎮濤, 鄧濤, 李志飛, 等. 基于安時積分和無跡卡爾曼濾波的鋰離子電池SOC估算方法研究. 中國機械工程, 2020, 31(15):1823 doi: 10.3969/j.issn.1004-132X.2020.15.009
    [3] Sheng J X, Zhang B J, Zhu B, et al. Parameter optimization and experimental comparison of two-speed pure electric vehicle transmission systems. China Mech Eng, 2019, 30(7): 763 doi: 10.3969/j.issn.1004-132X.2019.07.002

    盛繼新, 張邦基, 朱波, 等. 兩擋純電動汽車傳動系統參數優化和試驗對比. 中國機械工程, 2019, 30(7):763 doi: 10.3969/j.issn.1004-132X.2019.07.002
    [4] Chen S Y, Hung Y H, Wu C H, et al. Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization. Appl Energy, 2015, 160: 132 doi: 10.1016/j.apenergy.2015.09.047
    [5] Liu Y G, Lu L L, Xie Q B, et al. Energy management strategy for plug-in hybrid electric vehicle based on road slope information. Chin J Eng, 2016, 38(7): 1025

    劉永剛, 盧立來, 解慶波, 等. 基于道路坡度信息的插電式混合動力汽車能量管理策略. 工程科學學報, 2016, 38(7):1025
    [6] Ming L, Ying Y, Liang L J, et al. Energy management strategy of a plug-in parallel hybrid electric vehicle using fuzzy control. Energy Procedia, 2017, 105: 2660 doi: 10.1016/j.egypro.2017.03.771
    [7] Lin X Y, Li X F, Shen Y, et al. Charge depleting range dynamic strategy with power feedback considering fuel-cell degradation. Appl Math Model, 2020, 80: 345 doi: 10.1016/j.apm.2019.11.019
    [8] Tian H, Lu Z W, Wang X, et al. A length ratio based neural network energy management strategy for online control of plug-in hybrid electric city bus. Appl Energy, 2016, 177: 71 doi: 10.1016/j.apenergy.2016.05.086
    [9] Xie S B, Hu X S, Xin Z K, et al. Pontryagin's Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus. Appl Energy, 2019, 236: 893 doi: 10.1016/j.apenergy.2018.12.032
    [10] Lin X Y, Li H L. Adaptive control strategy extracted from dynamic programming and combined with driving pattern recognition for SPHEB. Int J Automot Technol, 2019, 20(5): 1009 doi: 10.1007/s12239-019-0095-7
    [11] Hua Y, Zhou S D, He R, et al. Review on lithium-ion battery equilibrium technology applied for EVs. J Mech Eng, 2019, 55(20): 73

    華旸, 周思達, 何瑢, 等. 車用鋰離子動力電池組均衡管理系統研究進展. 機械工程學報, 2019, 55(20):73
    [12] Liu H L, Chen G P, Wang J W. Design and energy management of electro-hydraulic parallel hybrid power system for battery bus. Automot Eng, 2020, 42(12): 1621

    劉桓龍, 陳冠鵬, 王家為. 蓄電池公交車電液并聯混合動力系統設計與能量管理. 汽車工程, 2020, 42(12):1621
    [13] Shi Y S, Shi M Z, Ding E S, et al. Life prediction method of lithium ion battery based on CEEMDAN-LSTM combination. Chin J Eng, 2021, 43(7): 985

    史永勝, 施夢琢, 丁恩松, 等. 基于CEEMDAN–LSTM組合的鋰離子電池壽命預測方法. 工程科學學報, 2021, 43(7):985
    [14] Bai Y F, He H W, Li J W, et al. Battery anti-aging control for a plug-in hybrid electric vehicle with a hierarchical optimization energy management strategy. J Clean Prod, 2019, 237: 117841 doi: 10.1016/j.jclepro.2019.117841
    [15] Feng Y B, Dong Z M. Optimal energy management with balanced fuel economy and battery life for large hybrid electric mining truck. J Power Sources, 2020, 454: 227948 doi: 10.1016/j.jpowsour.2020.227948
    [16] Zhang X, Gao Y Z, Guo B J, et al. A novel quantitative electrochemical aging model considering side reactions for lithium-ion batteries. Electrochimica Acta, 2020, 343: 136070 doi: 10.1016/j.electacta.2020.136070
    [17] Moura S J, Stein J L, Fathy H K. Battery-health conscious power management in plug-in hybrid electric vehicles via electrochemical modeling and stochastic control. IEEE Trans Control Syst Technol, 2013, 21(3): 679 doi: 10.1109/TCST.2012.2189773
    [18] Zhang F T, Yang F Y, Xue D L, et al. Optimization of compound power split configurations in PHEV bus for fuel consumption and battery degradation decreasing. Energy, 2019, 169: 937 doi: 10.1016/j.energy.2018.12.059
    [19] Zhang S, Hu X S, Xie S B, et al. Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses. Appl Energy, 2019, 256: 113891 doi: 10.1016/j.apenergy.2019.113891
    [20] Lin X Y, Li X F, Lin H B. Optimazation feedback control strategy based ECMS for plug-in FCHEV considering fuel cell decay. China J Highw Transp, 2019, 32(5): 153

    林歆悠, 李雪凡, 林海波. 考慮燃料電池衰退的FCHEV反饋優化控制策略. 中國公路學報, 2019, 32(5):153
    [21] Xie S B, Hu X S, Zhang Q K, et al. Aging-aware co-optimization of battery size, depth of discharge, and energy management for plug-in hybrid electric vehicles. J Power Sources, 2020, 450: 227638 doi: 10.1016/j.jpowsour.2019.227638
    [22] Engbroks L, G?rke D, Schmiedler S, et al. Combined energy and thermal management for plug-in hybrid electric vehicles -analyses based on optimal control theory. IFAC PapersOnLine, 2019, 52(5): 610 doi: 10.1016/j.ifacol.2019.09.097
    [23] Wang J, Liu P, Hicks-Garner J, et al. Cycle-life model for graphite-LiFePO4 cells. J Power Sources, 2011, 196(8): 3942 doi: 10.1016/j.jpowsour.2010.11.134
    [24] Tang L, Rizzoni G, Onori S. Energy management strategy for HEVs including battery life optimization. IEEE Trans Transp Electrif, 2015, 1(3): 211 doi: 10.1109/TTE.2015.2471180
    [25] Suri G, Onori S. A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries. Energy, 2016, 96: 644 doi: 10.1016/j.energy.2015.11.075
    [26] Onori S, Spagnol P, Marano V, et al. A new life estimation method for lithium-ion batteries in plug-in hybrid electric vehicles applications. Int J Power Electron, 2012, 4(3): 302 doi: 10.1504/IJPELEC.2012.046609
  • 加載中
圖(14) / 表(2)
計量
  • 文章訪問數:  461
  • HTML全文瀏覽量:  347
  • PDF下載量:  42
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-03-01
  • 網絡出版日期:  2021-07-29
  • 刊出日期:  2022-11-01

目錄

    /

    返回文章
    返回