<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

煙氣循環燒結熱風罩內氣流數值模擬及優化

羅云飛 龍紅明 趙利明 周江虹 余正偉 王毅璠

羅云飛, 龍紅明, 趙利明, 周江虹, 余正偉, 王毅璠. 煙氣循環燒結熱風罩內氣流數值模擬及優化[J]. 工程科學學報, 2022, 44(11): 1852-1859. doi: 10.13374/j.issn2095-9389.2021.01.21.002
引用本文: 羅云飛, 龍紅明, 趙利明, 周江虹, 余正偉, 王毅璠. 煙氣循環燒結熱風罩內氣流數值模擬及優化[J]. 工程科學學報, 2022, 44(11): 1852-1859. doi: 10.13374/j.issn2095-9389.2021.01.21.002
LUO Yun-fei, LONG Hong-ming, ZHAO Li-ming, ZHOU Jiang-hong, YU Zheng-wei, WANG Yi-fan. Numerical simulation and optimization of the flow in the sintering flue gas circulating hot air hood[J]. Chinese Journal of Engineering, 2022, 44(11): 1852-1859. doi: 10.13374/j.issn2095-9389.2021.01.21.002
Citation: LUO Yun-fei, LONG Hong-ming, ZHAO Li-ming, ZHOU Jiang-hong, YU Zheng-wei, WANG Yi-fan. Numerical simulation and optimization of the flow in the sintering flue gas circulating hot air hood[J]. Chinese Journal of Engineering, 2022, 44(11): 1852-1859. doi: 10.13374/j.issn2095-9389.2021.01.21.002

煙氣循環燒結熱風罩內氣流數值模擬及優化

doi: 10.13374/j.issn2095-9389.2021.01.21.002
基金項目: 國家自然科學基金資助項目(51674002)
詳細信息
    通訊作者:

    E-mail: ahutwyf@163.com

  • 中圖分類號: TF046.4

Numerical simulation and optimization of the flow in the sintering flue gas circulating hot air hood

More Information
  • 摘要: 煙氣循環技術是基于部分熱廢氣被再次引入燒結過程的原理而開發的一種新型燒結模式,對提高燒結余熱利用率、降低污染物排放和燒結能耗具有顯著效果。但循環煙氣在煙氣罩內流動狀態、煙氣罩漏風狀況等對煙氣循環的效果及穩定性至關重要。為此,對某鋼廠循環煙氣罩內煙氣流動狀態及漏風狀況進行模擬,結果表明:現有煙氣罩人孔打開時雖然在一定程度上削弱了煙氣進入形成漩渦的強度,但并未改善煙氣旋轉流動,導致料面上煙氣流速不均;通過優化煙氣罩內導流板結構和數量,削弱了煙氣罩內煙氣旋轉流動,明顯改善了循環煙氣的流動,使煙氣分布更均勻;同時煙氣罩漏風狀況大大改善,優化后使A側漏風口由漏風1.2 m3?s?1變為吸風2.4 m3?s?1,有利于燒結生產的順行。

     

  • 圖  1  煙氣罩三維模型

    Figure  1.  3D model of the fume hood

    圖  2  熱風罩流場及溫度場計算網格劃分

    Figure  2.  Grid division for flow field and temperature field calculation of hot air hood

    圖  3  煙氣罩不同方案狀況示意圖.(a) 原方案; (b) 優化方案1; (c) 優化方案2

    Figure  3.  Schematic diagram of different schemes of the flue gas hood: (a) original scheme; (b) optimized scheme 1; (c) optimized scheme 2

    圖  4  原方案煙氣罩內煙氣運動流線.(a) 人孔閉; (b) 人孔開; (c) 側視流線圖

    Figure  4.  Streamline of the smoke movement in the flue gas hood of the original scheme: (a) closed manhole; (b) opened manhole; (c) side view streamline diagram

    圖  5  優化方案1煙氣罩內煙氣運動流線.(a) 人孔閉; (b) 人孔開

    Figure  5.  Movement streamline of the flue gas in the flue gas hood for the optimized scheme 1: (a) closed manhole; (b) opened manhole

    圖  6  優化方案2煙氣罩內煙氣運動流線.(a) 人孔閉; (b) 人孔開

    Figure  6.  Movement streamline of the flue gas in the flue gas hood for the optimized scheme 2: (a) closed manhole closed; (b) opened manhole

    圖  7  不同方案條件下漏風口速度場分布.(a) 原方案; (b) 優化1; (c) 優化2

    Figure  7.  Velocity field distribution of air leakage vents under different scheme conditions: (a) original scheme; (b) optimization 1; (c) optimization 2

    圖  8  優化方案1 與原方案A側漏風處煙氣速度對比

    Figure  8.  Optimization plan 1 and original plan comparison of smoke velocities at the air leakage on side A

    圖  9  優化方案2與原方案A側漏風處煙氣速度對比

    Figure  9.  Optimization plan 2 and original plan comparison of smoke velocities at the air leakage on side A

    圖  10  煙氣罩原方案和優化方案A側漏風處漏風(負值)和吸風(正值)狀況

    Figure  10.  Air leakage (negative values) and suction (positive values) of the original and optimized schemes of the flue gas hood at the air leakage on side A

    表  1  數學模型計算邊界條件

    Table  1.   Mathematical model to calculate boundary conditions

    Boundary conditionsParameter
    Ventilation negative pressure/kPa?18
    Inlet pressure/kPa0
    Manhole pressure/kPa0.1
    Leakage pressure/kPa0
    Bed thickness/mm850
    Width of air leakage gap/mm10
    Bed width/mm6200
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1

    邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1
    [2] He K B. Winning the defense of the blue sky needs to acceleratethe ultra-low emission transformation of the steel industry. China Environ News, 2019-05-06

    賀克斌. 打贏藍天保衛戰需要加快鋼鐵行業超低排放改造. 中國環境報, 2019-05-06
    [3] Li X C. Road map to high-quality development of iron and steel industry in new age. Iron Steel, 2019, 54(1): 1 doi: 10.13228/j.boyuan.issn0449-749x.20180264

    李新創. 新時代鋼鐵工業高質量發展之路. 鋼鐵, 2019, 54(1):1 doi: 10.13228/j.boyuan.issn0449-749x.20180264
    [4] Zhou J C, Zhang C X, Li X P, et al. Status of energy consumption and review and prospect of energy saving technologies of blast furnace procedure in China. J Iron Steel Res, 2010, 22(9): 1 doi: 10.13228/j.boyuan.issn1001-0963.2010.09.011

    周繼程, 張春霞, 酈秀萍, 等. 中國高爐工序能耗現狀及節能技術的回顧與展望. 鋼鐵研究學報, 2010, 22(9):1 doi: 10.13228/j.boyuan.issn1001-0963.2010.09.011
    [5] Gao X. Development situation and trend analysis of sintering industry in China. Iron Steel, 2008, 43(1): 85 doi: 10.3321/j.issn:0449-749X.2008.01.021

    郜學. 中國燒結行業的發展現狀和趨勢分析. 鋼鐵, 2008, 43(1):85 doi: 10.3321/j.issn:0449-749X.2008.01.021
    [6] Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. Chin J Eng, 2018, 40(7): 767

    閆伯駿, 邢奕, 路培, 等. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展. 工程科學學報, 2018, 40(7):767
    [7] Que Z G, Wu S L, Ai X B. To reduce NOx emission based on optimizing the existing states of coarse coke breeze during iron ore sintering process. Chin J Eng, 2020, 42(2): 163

    闕志剛, 吳勝利, 艾仙斌. 基于優化粗粒級固體燃料賦存形態的鐵礦燒結過程NOx減排. 工程科學學報, 2020, 42(2):163
    [8] Xia J F, Yu Y J, Wang X J, et al. Research on operation parameters optimization of sinter cooler waste heat recovery system based on exergy efficiency optimization. J Iron Steel Res, 2019, 31(7): 637 doi: 10.13228/j.boyuan.issn1001-0963.20180311

    夏建芳, 余媛君, 王瀟杰, 等. 基于?效率目標的環冷機余熱回收系統操作參數優化. 鋼鐵研究學報, 2019, 31(7):637 doi: 10.13228/j.boyuan.issn1001-0963.20180311
    [9] Wang G, Wen Z, Lou G F, et al. Mathematical modeling of and parametric studies on flue gas recirculation iron ore sintering. Appl Therm Eng, 2016, 102: 648 doi: 10.1016/j.applthermaleng.2016.04.018
    [10] Long H M, Zhang X Y, Li J X, et al. Study on emission characteristics of SO2 and feasibility of desulfurization in iron ore sintering process. Chin J Process Eng, 2015, 15(2): 230

    龍紅明, 張向陽, 李家新, 等. 鐵礦燒結過程SO2的排放特性及過程脫硫的可行性研究. 過程工程學報, 2015, 15(2):230
    [11] Qie J M, Zhang C X, Wang H F, et al. Analysis of emission situation and emission reduction technology of typical sintering flue gas pollutants. Sinter Pelletizing, 2016, 41(6): 59 doi: 10.13403/j.sjqt.2016.06.078

    郄俊懋, 張春霞, 王海風, 等. 燒結煙氣典型污染物排放形勢及減排技術分析. 燒結球團, 2016, 41(6):59 doi: 10.13403/j.sjqt.2016.06.078
    [12] Liu C P, Yang D W, Hui J M, et al. One-stop solution of cascade utilization of waste heat recovery, desulfurization and denitrification in the sintering system. J Iron Steel Res, 2016, 28(10): 50 doi: 10.13228/j.boyuan.issn1001-0963.20150364

    劉傳鵬, 楊東偉, 惠建明, 等. 燒結余熱梯級利用及脫硫脫硝一站式解決方案. 鋼鐵研究學報, 2016, 28(10):50 doi: 10.13228/j.boyuan.issn1001-0963.20150364
    [13] Ding Y, Shi D M. High-efficiency utilization of waste heat at fully integrated steel plant. Iron Steel, 2011, 46(10): 88 doi: 10.13228/j.boyuan.issn0449-749x.2011.10.020

    丁毅, 史德明. 鋼鐵企業余熱資源高效利用. 鋼鐵, 2011, 46(10):88 doi: 10.13228/j.boyuan.issn0449-749x.2011.10.020
    [14] Sun Y J, Dong H, Feng J S, et al. Thermodynamic analysis of waste heat recovery for sinter?cooling system. J Iron Steel Res, 2015, 27(1): 16

    孫用軍, 董輝, 馮軍勝, 等. 燒結?冷卻?余熱回收系統熱力學分析. 鋼鐵研究學報, 2015, 27(1):16
    [15] Wang Z C, Zhou Z A, Hu B, et al. Wind-oxygen balance model of flue gas circulation in sintering. Iron Steel, 2015, 50(12): 53 doi: 10.13228/j.boyuan.issn0449-749x.20150418

    王兆才, 周志安, 胡兵, 等. 燒結煙氣循環風氧平衡模型. 鋼鐵, 2015, 50(12):53 doi: 10.13228/j.boyuan.issn0449-749x.20150418
    [16] Ren W, Gao J, Xu W Q, et al. Numerical simulation of sintering flue gas circulation system equipment?flue gas distributor based on fluent. J North Univ China (Nat Sci Ed), 2021, 42(1): 56

    任偉, 高璟, 徐文青, 等. 基于Fluent的燒結煙氣循環系統設備?煙氣分配器數值模擬. 中北大學學報(自然科學版), 2021, 42(1):56
    [17] Long H M, Wang Y F, Wu Y, et al. Study on sintering flue gas for recycling of pollutants aimed at emission reduction and progress of applications. Angang Technol, 2020(1): 9

    龍紅明, 王毅璠, 伍英, 等. 面向污染物減排的燒結煙氣循環研究與應用進展. 鞍鋼技術, 2020(1):9
    [18] Qian L X, Wang Y F, Liu M L, et al. Performance evaluation of urea injection on the emission reduction of dioxins and furans in a commercial municipal solid waste incinerator. Process Saf Environ Prot, 2021, 146: 577 doi: 10.1016/j.psep.2020.11.048
    [19] Zhang Y D, Long H M, Wu Y, et al. Analysis on reaction in sintering process under hot exhaust gas circulation. Sinter Pelletizing, 2020, 45(5): 63

    章裕東, 龍紅明, 伍英, 等. 熱廢氣循環條件下的燒結過程反應解析. 燒結球團, 2020, 45(5):63
    [20] Long H M, Li J X, Wang P, et al. Reaction mechanism of emission reduction of dioxin by addition of urea in iron ore sintering process. Chin J Process Eng, 2010, 10(5): 944

    龍紅明, 李家新, 王平, 等. 尿素對減少鐵礦燒結過程二惡英排放的作用機理. 過程工程學報, 2010, 10(5):944
    [21] Ahn H, Choi S, Cho B. Process simulation of iron ore sintering bed with flue gas recirculation. Ironmak Steelmak, 2013, 40(2): 120 doi: 10.1179/1743281212Y.0000000071
    [22] Ahn H, Choi S, Cho B. Process simulation of iron ore sintering bed with flue gas recirculation. Ironmak Steelmak, 2013, 40(2): 128 doi: 10.1179/1743281212Y.0000000072
    [23] Zhang X H, Zhang J Y, Tian W Y, et al. Numerical simulation of flue gas circulation sintering. J Central South Univ (Sci Technol), 2014, 45(4): 1312

    張小輝, 張家元, 田萬一, 等. 煙氣循環燒結的數值仿真. 中南大學學報(自然科學版), 2014, 45(4):1312
    [24] Fan X H, Yu Z Y, Gan M, et al. Influence of O2 content in circulating flue gas on iron ore sintering. J Iron Steel Res Int, 2013, 20(6): 1 doi: 10.1016/S1006-706X(13)60103-X
    [25] Fan X H, Yu Z Y, Gan M, et al. Combustion behavior and influence mechanism of CO on iron ore sintering with flue gas recirculation. J Central South Univ, 2014, 21(6): 2391 doi: 10.1007/s11771-014-2192-0
    [26] Yang Z W, Wang Z C, Wen R Y, et al. Simulation research of sintering flue gas recirculation system. Sinter Pelletizing, 2018, 43(3): 63

    楊正偉, 王兆才, 溫榮耀, 等. 燒結煙氣循環系統仿真模擬研究. 燒結球團, 2018, 43(3):63
    [27] Xu Y, Mao R, Wang F, et al. Numerical simulation of sintering flue gas circulation system. J Iron Steel Res, 2020, 32(7): 675

    許源, 毛瑞, 王飛, 等. 燒結煙氣循環系統數值模擬. 鋼鐵研究學報, 2020, 32(7):675
  • 加載中
圖(10) / 表(1)
計量
  • 文章訪問數:  723
  • HTML全文瀏覽量:  212
  • PDF下載量:  75
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-21
  • 網絡出版日期:  2021-04-23
  • 刊出日期:  2022-11-01

目錄

    /

    返回文章
    返回