<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

金礦非氰化浸金研究進展

彭科波 高利坤 饒兵 龔志輝 沈海榕 高廣言 何飛 張明

彭科波, 高利坤, 饒兵, 龔志輝, 沈海榕, 高廣言, 何飛, 張明. 金礦非氰化浸金研究進展[J]. 工程科學學報, 2021, 43(7): 871-882. doi: 10.13374/j.issn2095-9389.2020.11.15.001
引用本文: 彭科波, 高利坤, 饒兵, 龔志輝, 沈海榕, 高廣言, 何飛, 張明. 金礦非氰化浸金研究進展[J]. 工程科學學報, 2021, 43(7): 871-882. doi: 10.13374/j.issn2095-9389.2020.11.15.001
PENG Ke-bo, GAO Li-kun, RAO Bing, GONG Zhi-hui, SHEN Hai-rong, GAO Guang-yan, HE Fei, ZHANG Ming. Research progress of non-cyanide gold leaching in gold mines[J]. Chinese Journal of Engineering, 2021, 43(7): 871-882. doi: 10.13374/j.issn2095-9389.2020.11.15.001
Citation: PENG Ke-bo, GAO Li-kun, RAO Bing, GONG Zhi-hui, SHEN Hai-rong, GAO Guang-yan, HE Fei, ZHANG Ming. Research progress of non-cyanide gold leaching in gold mines[J]. Chinese Journal of Engineering, 2021, 43(7): 871-882. doi: 10.13374/j.issn2095-9389.2020.11.15.001

金礦非氰化浸金研究進展

doi: 10.13374/j.issn2095-9389.2020.11.15.001
基金項目: 國家自然科學基金地區科學基金資助項目(51764023)
詳細信息
    通訊作者:

    E-mail:20030032@kust.edu.cn

  • 中圖分類號: TF831

Research progress of non-cyanide gold leaching in gold mines

More Information
  • 摘要: 隨著易處理金礦石資源枯竭,含砷、含碳、高硫、超細顆粒金礦石已成為金礦開采的重點,這些難處理金礦通過常規氰化浸金等方法浸出效果差,由于氰化物有劇毒,會危害人體健康,并嚴重污染生態環境。非氰化法浸金因具有環保、浸出速率快、效率高等優點受到了廣泛關注。在綜述了硫代硫酸鹽法、甘氨酸法、鹵素法、石硫合劑法、碘化焙燒工藝、硫脲浸出法和非水溶液浸金7種非氰浸金方法的浸金原理及其在難處理金礦方面的最新研究進展的基礎上,討論了非氰浸金方法存在的浸出劑昂貴、浸出液中金回收困難、浸出體系復雜、浸出劑性質不穩定及消耗量大等問題,并對非氰浸金技術的發展方向進行了展望。

     

  • 圖  1  硫代硫酸鹽分解的簡化路線[16]

    Figure  1.  Simplified route for thiosulfate decomposition[16]

    圖  2  銅氨催化金溶解的機理[14]

    Figure  2.  Mechanism of copper ammonia catalyzed gold dissolution[14]

    圖  3  鎳氨催化硫代硫酸鹽浸出金的機理模型[23]

    Figure  3.  Mechanism model of thiosulfate leaching of gold with nickel-ammonia catalysis[23]

    圖  4  鈷氨催化硫代硫酸鹽浸金機理的電化學模型[26]

    Figure  4.  Electrochemical model for cobalt-catalytic mechanism of ammoniacal thiosulfate leaching of gold[26]

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Reith F, Lengke M, Falconer D, et al. The geomicrobiology of gold. ISME J, 2007: 567
    [2] Yu S M, Yu T T, Song W P, et al. Ultrasound-assisted cyanide extraction of gold from gold concentrate at low temperature. Ultrason Sonochem, 2020, 64: 105039 doi: 10.1016/j.ultsonch.2020.105039
    [3] Guo X Y, Zhang L, Tian Q H, et al. Stepwise extraction of gold and silver from refractory gold concentrate calcine by thiourea. Hydrometallurgy, 2020, 194: 105330 doi: 10.1016/j.hydromet.2020.105330
    [4] Han J H, Li X A, Dai S J. Electrochemical influence of quartz on cyanide leaching of gold. Chem Phys Lett, 2020, 739: 136997 doi: 10.1016/j.cplett.2019.136997
    [5] Wang H J, Feng Y L, Li H R, et al. Simultaneous extraction of gold and zinc from refractory carbonaceous gold ore by chlorination roasting process. Trans Nonferrous Met Soc China, 2020, 30(4): 1111 doi: 10.1016/S1003-6326(20)65282-7
    [6] Yang T Z, Rao S, Liu W F, et al. A selective process for extracting antimony from refractory gold ore. Hydrometallurgy, 2017, 169: 571 doi: 10.1016/j.hydromet.2017.03.014
    [7] Jia Y J, Wang X H, Cheng W, et al. Research progress on non-cyanide leaching of refractory gold ores. Chin J Eng, 2019, 41(3): 307

    賈玉娟, 王曉輝, 程偉, 等. 難處理金礦非氰浸金研究進展. 工程科學學學報, 2019, 41(3):307
    [8] Cao P, Zhang S H, Zheng Y J. Effects of iron, arsenic and carbon removal from a dust of refractory gold concentrates on cyanide leaching. Chin J Nonferrous Met, 2020, 30(5): 1142 doi: 10.11817/j.ysxb.1004.0609.2020-39533

    曹攀, 張霜華, 鄭雅杰. 難冶金精礦煙塵中鐵砷碳的脫除對氰化浸金的影響. 中國有色金屬學報, 2020, 30(5):1142 doi: 10.11817/j.ysxb.1004.0609.2020-39533
    [9] Ren C Y. Study on The Mechanism and Process of Gold Leaching by Thiourea in The Acid System of Biological Pre-Oxidation Residue of Refractory Gold Ore Containing Arsenic [Dissertation]. Beijing: General Research Institute for Nonferrous Metals, 2020

    任傳裕. 含砷難處理金礦生物預氧化渣酸性體系硫脲浸金機理及工藝研究[學位論文]. 北京: 北京有色金屬研究總院, 2020
    [10] Wang G H, Liu X X, Wu Y H, et al. Bio-oxidation of a high-sulfur refractory gold concentrate with a two-stage chemical-biological approach. Hydrometallurgy, 2020, 197: 105421 doi: 10.1016/j.hydromet.2020.105421
    [11] Wang J, Wang W, Dong K W, et al. Research on leaching of carbonaceous gold ore with copper-ammonia-thiosulfate solutions. Miner Eng, 2019, 137: 232 doi: 10.1016/j.mineng.2019.04.013
    [12] Liu X L, Jiang T, Xu B, et al. Thiosulphate leaching of gold in the Cu?NH3? $ {\rm{S_2O_3^{2-}}} $?H2O system: An updated thermodynamic analysis using predominance area and species distribution diagrams. Miner Eng, 2020, 151: 106336 doi: 10.1016/j.mineng.2020.106336
    [13] Liu X L, Xu B, Yang Y B, et al. Effect of galena on thiosulfate leaching of gold. Hydrometallurgy, 2017, 171: 157 doi: 10.1016/j.hydromet.2017.05.011
    [14] Yang Y B, Gao W, Xu B, et al. Study on oxygen pressure thiosulfate leaching of gold without the catalysis of copper and ammonia. Hydrometallurgy, 2019, 187: 71 doi: 10.1016/j.hydromet.2019.05.006
    [15] Nie Y H, Yang L, Wang Q, et al. Connection between gold dissolution in thiosulfate leaching and Cu(II) complexes during the cathodic process. Electrochimica Acta, 2019, 328: 135079 doi: 10.1016/j.electacta.2019.135079
    [16] Xu B, Li K, Zhong Q, et al. Study on the oxygen pressure alkaline leaching of gold with generated thiosulfate from sulfur oxidation. Hydrometallurgy, 2018, 177: 178 doi: 10.1016/j.hydromet.2018.03.006
    [17] Jeffrey M I, Watling K, Hope G A, et al. Identification of surface species that inhibit and passivate thiosulfate leaching of gold. Miner Eng, 2008, 21(6): 443 doi: 10.1016/j.mineng.2008.01.006
    [18] Baron J Y, Mirza J, Nicol E A, et al. SERS and electrochemical studies of the gold-electrolyte interface under thiosulfate based leaching conditions. Electrochimica Acta, 2013, 111: 390 doi: 10.1016/j.electacta.2013.07.195
    [19] Xu B, Yang Y B, Li Q, et al. Effect of common associated sulfide minerals on thiosulfate leaching of gold and the role of humic acid additive. Hydrometallurgy, 2017, 171: 44 doi: 10.1016/j.hydromet.2017.04.006
    [20] Yu H, Zi F T, Hu X Z, et al. The copper-ethanediamine-thiosulphate leaching of gold ore containing limonite with cetyltrimethyl ammonium bromide as the synergist. Hydrometallurgy, 2014, 150: 178 doi: 10.1016/j.hydromet.2014.10.008
    [21] Chandra I, Jeffrey M I. A fundamental study of ferric oxalate for dissolving gold in thiosulfate solutions. Hydrometallurgy, 2005, 77(3? 4): 191
    [22] Heath J A, Jeffrey M I, Zhang H G, et al. Anaerobic thiosulfate leaching: Development of in situ gold leaching systems. Miner Eng, 2008, 21(6): 424 doi: 10.1016/j.mineng.2007.12.006
    [23] Xu B, Li K, Dong Z L, et al. Eco-friendly and economical gold extraction by nickel catalyzed ammoniacal thiosulfate leaching-resin adsorption recovery. J Cleaner Prod, 2019, 233: 1475 doi: 10.1016/j.jclepro.2019.06.182
    [24] Xu B, Yang Y B, Li Q, et al. Stage leaching of a complex polymetallic sulfide concentrate: Focus on the extraction of Ag and Au. Hydrometallurgy, 2016, 159: 87 doi: 10.1016/j.hydromet.2015.10.008
    [25] Xu B, Li K, Li Q, et al. Kinetic studies of gold leaching from a gold concentrate calcine by thiosulfate with cobalt-ammonia catalysis and gold recovery by resin adsorption from its pregnant solution. Sep Purif Technol, 2019, 213: 368 doi: 10.1016/j.seppur.2018.12.064
    [26] Liu X L, Xu B, Yang Y B, et al. Thermodynamic analysis of ammoniacal thiosulphate leaching of gold catalysed by Co(III)/Co(II) using Eh-pH and speciation diagrams. Hydrometallurgy, 2018, 178: 240 doi: 10.1016/j.hydromet.2018.05.014
    [27] Nie Y H, Yang L, Sun W, et al. Increase in gold dissolution in copper ammonia thiosulfate solution via cobalt surface modification. Hydrometallurgy, 2020, 197: 105473 doi: 10.1016/j.hydromet.2020.105473
    [28] Altinkaya P, Wang Z L, Korolev I, et al. Leaching and recovery of gold from ore in cyanide-free glycine media. Miner Eng, 2020, 158: 106610 doi: 10.1016/j.mineng.2020.106610
    [29] Oraby E A, Eksteen J J, Tanda B C. Gold and copper leaching from gold-copper ores and concentrates using a synergistic lixiviant mixture of glycine and cyanide. Hydrometallurgy, 2017, 169: 339 doi: 10.1016/j.hydromet.2017.02.019
    [30] Tauetsile P J, Oraby E A, Eksteen J J. Activated carbon adsorption of gold from cyanide-starved glycine solutions containing copper. Part 1: Isotherms. Sep Purif Technol, 2019, 211: 594 doi: 10.1016/j.seppur.2018.09.024
    [31] Feng D, van Deventer J S J. The role of amino acids in the thiosulphate leaching of gold. Miner Eng, 2011, 24(9): 1022 doi: 10.1016/j.mineng.2011.04.017
    [32] Groudev S N, Ivanov I M, Spasova I I, et al. Pilot scale microbial leaching of gold and silver from an oxide ore in elshitza mine//Minerals Bioprocessing II Conference. Bulgaria, 1995: 135
    [33] Oraby E A, Eksteen J J. The leaching of gold, silver and their alloys in alkaline glycine-peroxide solutions and their adsorption on carbon. Hydrometallurgy, 2015, 152: 199 doi: 10.1016/j.hydromet.2014.12.015
    [34] Wu H, Feng Y L, Huang W F, et al. The role of glycine in the ammonium thiocyanate leaching of gold. Hydrometallurgy, 2019, 185: 111 doi: 10.1016/j.hydromet.2019.01.019
    [35] Perea C G, Restrepo O J. Use of amino acids for gold dissolution. Hydrometallurgy, 2018, 177: 79 doi: 10.1016/j.hydromet.2018.03.002
    [36] Oraby E A, Eksteen J J, Karrech A, et al. Gold extraction from paleochannel ores using an aerated alkaline glycine lixiviant for consideration in heap and in situ leaching applications. Miner Eng, 2019, 138: 112 doi: 10.1016/j.mineng.2019.04.023
    [37] Adams M D. Chloride as an alternative lixiviant to cyanide for gold ores. Gold Ore Process, 2016: 525
    [38] Ahtiainen R, Lundstr?m M. Cyanide-free gold leaching in exceptionally mild chloride solutions. J Cleaner Prod, 2019, 234: 9 doi: 10.1016/j.jclepro.2019.06.197
    [39] Wang Q. Non-Cyanide Gold Extraction Experiment and Mechanism Study of Fine-Grained Carbonaceous Gold Deposit [Dissertation]. Kunming: Kunming University of Science and Technology, 2019

    王強. 微細粒包裹型碳質金礦的非氰提金試驗及機理研究[學位論文]. 昆明: 昆明理工大學, 2019
    [40] Diaz M A, Kelsall G H, Welham N J. Electrowinning coupled to gold leaching by electrogenerated chlorine: I. Au(III)–Au(I)/Au kinetics in aqueous Cl2/Cl? electrolytes. J Electroanal Chem, 1993, 361(1-2): 25 doi: 10.1016/0022-0728(93)87035-T
    [41] Seisko S, Aromaa J, Lundstr?m M. Effect of redox potential and OCP in ferric and cupric chloride leaching of gold. Hydrometallurgy, 2020, 195: 105374 doi: 10.1016/j.hydromet.2020.105374
    [42] Seisko S, Aromaa J, Lundstr?m M. Features affecting the cupric chloride leaching of gold. Miner Eng, 2019, 137: 94 doi: 10.1016/j.mineng.2019.03.030
    [43] Zhang N, Zhou Q B, Yin X, et al. Trace amounts of aqueous copper(II) chloride complexes in hypersaline solutions: Spectrophotometric and thermodynamic studies. J Solution Chem, 2014, 43(2): 326 doi: 10.1007/s10953-014-0129-8
    [44] Seisko S, Lampinen M, Aromaa J, et al. Kinetics and mechanisms of gold dissolution by ferric chloride leaching. Miner Eng, 2018, 115: 131 doi: 10.1016/j.mineng.2017.10.017
    [45] Lampinen M, Seisko S, Forsstr?m O, et al. Mechanism and kinetics of gold leaching by cupric chloride. Hydrometallurgy, 2017, 169: 103 doi: 10.1016/j.hydromet.2016.12.008
    [46] Bonsdorff R V, Aromaa J, O Forsén, et al. The rate of gold dissolution in concentrated cupric chloride solutions//The John E. Dutrizac International Symposium on Copper Hydrometallurgy. Toronto, 2007: 121
    [47] Baghalha M. Leaching of an oxide gold ore with chloride/hypochlorite solutions. Int J Miner Process, 2007, 82(4): 178 doi: 10.1016/j.minpro.2006.09.001
    [48] Nam K S, Jung B H, An J W, et al. Use of chloride-hypochlorite leachants to recover gold from tailing. Int J Miner Process, 2008, 86(1-4): 131
    [49] Hasab M G, Rashchi F, Raygan S. Simultaneous sulfide oxidation and gold leaching of a refractory gold concentrate by chloride-hypochlorite solution. Miner Eng, 2013, 50-51: 140
    [50] Hasab M G, Rashchi F, Raygan S. Chloride-hypochlorite leaching and hydrochloric acid washing in multi-stages for extraction of gold from a refractory concentrate. Hydrometallurgy, 2014, 142: 56 doi: 10.1016/j.hydromet.2013.11.015
    [51] Yanuar E, Suprapto. Leaching and adsorption of gold from lape-sumbawa rocks (Indonesia) by hypochlorite-chloride. Procedia Chem, 2015, 17: 59 doi: 10.1016/j.proche.2015.12.134
    [52] Pak K S, Zhang T A, Kim C S, et al. Research on chlorination leaching of pressure-oxidized refractory gold concentrate. Hydrometallurgy, 2020, 194: 105325 doi: 10.1016/j.hydromet.2020.105325
    [53] Sousa R, Futuro A, Fiúza A, et al. Bromine leaching as an alternative method for gold dissolution. Miner Eng, 2018, 118: 16 doi: 10.1016/j.mineng.2017.12.019
    [54] Wang Q, Hu X Z, Zi F T, et al. Extraction of gold from refractory gold ore using bromate and ferric chloride solution. Miner Eng, 2019, 136: 89 doi: 10.1016/j.mineng.2019.02.037
    [55] Chiu Y T, Lee P Y, Wi-Afedzi T, et al. Elimination of bromate from water using aluminum beverage cans via catalytic reduction and adsorption. J Colloid Interface Sci, 2018, 532: 416 doi: 10.1016/j.jcis.2018.07.112
    [56] Han P P, Xia Y. Thiol-functionalized metal-organic framework for highly efficient removal of bromate from water. J Environ Chem Eng, 2018, 6(2): 3384 doi: 10.1016/j.jece.2018.03.045
    [57] Vasudevan S. Studies relating to electrolytic preparation of potassium bromate. Ind Eng Chem Res, 2008, 47(5): 1743 doi: 10.1021/ie071554e
    [58] Davis A, Tran T. Gold dissolution in iodide electrolytes. Hydrometallurgy, 1991, 26(2): 163 doi: 10.1016/0304-386X(91)90029-L
    [59] Gong L Y, Li F, Yu Y, et al. Pollution-free iodinated desugarization by gold process conditions and regeneration research. Environ Sci Manag, 2011, 36(5): 64 doi: 10.3969/j.issn.1673-1212.2011.05.016

    宮麗媛, 李芬, 于洋, 等. 無污染碘化法提金工藝條件及再生研究. 環境科學與管理, 2011, 36(5):64 doi: 10.3969/j.issn.1673-1212.2011.05.016
    [60] Xu Q, Chen D H, Chen L, et al. Gold leaching from waste printed circuit board by iodine process. Nonferrous Met, 2010, 62(3): 88

    徐渠, 陳東輝, 陳亮, 等. 碘化法從廢棄印刷線路板中浸取金. 有色金屬, 2010, 62(3):88
    [61] Konyratbekova S S, Baikonurova A, Ussoltseva G A, et al. Thermodynamic and kinetic of iodine-iodide leaching in gold hydrometallurgy. Trans Nonferrous Met Soc China, 2015, 25(11): 3774 doi: 10.1016/S1003-6326(15)63980-2
    [62] Baghalha M. The leaching kinetics of an oxide gold ore with iodide/iodine solutions. Hydrometallurgy, 2012, 113-114: 42 doi: 10.1016/j.hydromet.2011.11.013
    [63] Altansukh B, Haga K, Ariunbolor N, et al. Leaching and adsorption of gold from waste printed circuit boards using iodine-iodide solution and activated carbon. Eng J, 2016, 20(4): 29 doi: 10.4186/ej.2016.20.4.29
    [64] Zhang X L, Sun C B, Xing Y, et al. Thermal decomposition behavior of pyrite in a microwave field and feasibility of gold leaching with generated elemental sulfur from the decomposition of gold-bearing sulfides. Hydrometallurgy, 2018, 180: 210 doi: 10.1016/j.hydromet.2018.07.012
    [65] Guo X Y, Qin H, Tian Q H, et al. The efficacy of a new iodination roasting technology to recover gold and silver from refractory gold tailing. J Cleaner Prod, 2020, 261: 121147 doi: 10.1016/j.jclepro.2020.121147
    [66] Li Q, Shen H, Zhang Y, et al. Research progress of thiourea gold leaching process. Gold, 2018, 39(1): 66 doi: 10.11792/hj20180114

    李騫, 沈煌, 張雁, 等. 硫脲浸金研究進展. 黃金, 2018, 39(1):66 doi: 10.11792/hj20180114
    [67] ?rgül S, Atalay ü. Reaction chemistry of gold leaching in thiourea solution for a turkish gold ore. Hydrometallurgy, 2002, 67(1-3): 71 doi: 10.1016/S0304-386X(02)00136-6
    [68] Li J S, Miller J D. Reaction kinetics of gold dissolution in acid thiourea solution using ferric sulfate as oxidant. Hydrometallurgy, 2007, 89(3-4): 279 doi: 10.1016/j.hydromet.2007.07.015
    [69] Bai A P. Research on Influencing Factors and Mechanism of Gold Leaching with Alkaline Thiourea Solution [Dissertation]. Beijing: Beijing General Research Institute of Nonferrous Metals, 2017

    白安平. 堿性硫脲浸金影響因素及浸出機理研究[學位論文]. 北京: 北京有色金屬研究總院, 2017
    [70] Zheng S, Wang Y Y, Chai L Y. Research status and prospect of gold leaching in alkaline thiourea solution. Miner Eng, 2006, 19(13): 1301 doi: 10.1016/j.mineng.2005.12.009
    [71] Guo Y J, Guo X, Wu H Y, et al. A novel bio-oxidation and two-step thiourea leaching method applied to a refractory gold concentrate. Hydrometallurgy, 2017, 171: 213 doi: 10.1016/j.hydromet.2017.05.023
    [72] Yoshimura A, Takai M, Matsuno Y. Novel process for recycling gold from secondary sources: Leaching of gold by dimethyl sulfoxide solutions containing copper bromide and precipitation with water. Hydrometallurgy, 2014, 149: 177 doi: 10.1016/j.hydromet.2014.08.003
  • 加載中
圖(4)
計量
  • 文章訪問數:  1538
  • HTML全文瀏覽量:  764
  • PDF下載量:  191
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-15
  • 網絡出版日期:  2021-03-27
  • 刊出日期:  2021-07-01

目錄

    /

    返回文章
    返回