<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高溫相變儲能微膠囊研究進展

江羽 王倩 王冬 趙彤

江羽, 王倩, 王冬, 趙彤. 高溫相變儲能微膠囊研究進展[J]. 工程科學學報, 2021, 43(1): 108-118. doi: 10.13374/j.issn2095-9389.2020.07.21.004
引用本文: 江羽, 王倩, 王冬, 趙彤. 高溫相變儲能微膠囊研究進展[J]. 工程科學學報, 2021, 43(1): 108-118. doi: 10.13374/j.issn2095-9389.2020.07.21.004
JIANG Yu, WANG Qian, WANG Dong, ZHAO Tong. Research progress of high-temperature phase change energy storage microcapsules[J]. Chinese Journal of Engineering, 2021, 43(1): 108-118. doi: 10.13374/j.issn2095-9389.2020.07.21.004
Citation: JIANG Yu, WANG Qian, WANG Dong, ZHAO Tong. Research progress of high-temperature phase change energy storage microcapsules[J]. Chinese Journal of Engineering, 2021, 43(1): 108-118. doi: 10.13374/j.issn2095-9389.2020.07.21.004

高溫相變儲能微膠囊研究進展

doi: 10.13374/j.issn2095-9389.2020.07.21.004
基金項目: 中國科學院化學研究所創新培育項目(CXPY-17)
詳細信息
    通訊作者:

    E-mail: wangqian@iccas.ac.cn

  • 中圖分類號: TQ316.3

Research progress of high-temperature phase change energy storage microcapsules

More Information
  • 摘要: 相變材料的微膠囊化能解決相變材料在相變過程中的熔融滲出問題,提高相變材料的環境適應性、拓展其應用。本文主要對300 ℃以上的高溫相變微膠囊材料的制備及其應用進行闡述,主要論述了相變材料的分類,微膠囊的合成方法,以及高溫微膠囊的研究現狀。且通過研究表明,具有高熔點、高焓值的氟化物微膠囊是一種非常有應用前景的相變材料。

     

  • 圖  1  相變材料的相變溫度(Tm)與焓值(ΔH)圖

    Figure  1.  Diagram of phase change temperature (Tm) and enthalpy (ΔH) of phase change materials

    圖  2  SEM圖像顯示通過勃姆石涂層和1130 ℃的熱氧化處理組合制備的MEPCM的表面形態(a~c)和橫截面(d)[39]

    Figure  2.  SEM images showing the surface morphology (a–c) and cross-section (d) of the MEPCM prepared by the combination of boehmite coating and heat oxidation treatment at 1130 ℃[39]

    圖  3  金屬包殼高溫相變儲熱微膠囊的光學顯微圖[43]

    Figure  3.  Optical micrograph of metal cladding high-temperature phase change heat storage microcapsules[43]

    圖  4  高溫加熱之前和之后的NaNO3(a)、(b)、(e)、(f)和MCP-NaNO3(c)、(d)、(g)、(h)的照片圖像和顯微圖像[47]

    Figure  4.  Photo images and micrograph images of NaNO3 (a)(b)(e)(f), and MCP-NaNO3 (c)(d)(g)(h) before and after heating at high temperature[47]

    圖  5  加熱后的微膠囊的SEM照片。(a)將沒有GO防腐蝕防漏層的LiF @ PDA @ SiO2微膠囊從35 ℃加熱至1000 ℃;(b)將沒有SiO2耐熱強度層的LiF @ PDA @ GO微膠囊從35 ℃加熱到1000 ℃;(c)將LiF @ GO @ SiO2微囊從35 ℃加熱到1000 ℃;(d)從35 ℃到900 ℃進行10次熱重循環后,LiF @ GO @ SiO2微膠囊[50]

    Figure  5.  SEM micrographs of microcapsules after heating: (a) LiF@PDA@SiO2 microcapsules without GO anti-corrosion leakage-proof layer being heated from 35 ℃ to 1000 ℃; (b) LiF@PDA@GO microcapsules without SiO2 heat-resistant strength layer being heated from 35 ℃ to 1000 ℃; (c) LiF@GO@SiO2 microcapsules being heated from 35 ℃ to 1000 ℃; (d) LiF@GO@SiO2 microcapsules after thermo-gravimetric circulation 10 times from 35 ℃ to 900 ℃[50]

    圖  6  1050~1150 ℃ 220次充放電循環后銅膠囊橫截面形態的SEM圖像[52]

    Figure  6.  SEM image of the cross-sectional morphology of the copper capsule after 220 charge–discharge cycles from 1050–1150 ℃[52]

    表  1  高溫相變材料的熔點和焓值

    Table  1.   Melting temperature and heat of fusion of high-temperature phase change materials

    MaterialMelting temperature / ℃Heat of fusion / (J·g–1)MaterialMelting temperature / ℃Heat of fusion / (J·g–1)
    NaNO3307172Mg651372.6
    RbNO331231Al660.1393.6
    Cd320.954FeCl2677337.9
    NaOH323170LiH6882678
    KNO3333266Li2MoO4703281
    Zn/Mg(52/48)340180MgCl2714454
    KOH380149.7Li2CO3732509
    Zn/Al(96/4)381138K75960.7
    CsNO340971KCl771353
    Zn419113NaCl800492
    AgBr43248.8LiBO2845504.7
    Mg/Cu/Zn(60/25/15)452254LiF8481080
    LiI458109Cu/P/Si(83/10/7)84092
    LiOH462433.4Na2CO3854275.7
    PbCl250178.7KF857452
    Al/Cu/Mg/Zn(54/22/18/6)520305ZnF2872400
    SrI252757K2CO3897235.8
    Al/Cu(66.92/33.08)548372Si/Mg(56/44)946757
    LiBr550203NaF996794
    Ca(NO3)2560145NaMgF31022670
    Al/Cu/Si(65/30/5)571422KCaF31070460
    Ba(NO3)2594209KMgF31072710
    Sr(NO3)2608221Cu1083205.2
    LiCl610441Na2SiO31088424
    CsI62996MgF21263930
    MgI263393CaF21418391
    CsBr638105CaSO41460203
    RbI646104Fe1535314
    SrBr265041SrSO41605196
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Dresselhaus M S, Thomas I L. Alternative energy technologies. Nature, 2001, 414(6861): 332 doi: 10.1038/35104599
    [2] Zalba B, Marin J M, Cabeza L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng, 2003, 23(3): 251 doi: 10.1016/S1359-4311(02)00192-8
    [3] Tuncbilek K, Sari A, Tarhan S, et al. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications. Energy, 2005, 30(5): 677 doi: 10.1016/j.energy.2004.05.017
    [4] Tan F L, Tso C P. Cooling of mobile electronic devices using phase change materials. Appl Therm Eng, 2004, 24(2-3): 159 doi: 10.1016/j.applthermaleng.2003.09.005
    [5] Mondal S. Phase change materials for smart textiles–an overview. Appl Therm Eng, 2008, 28(11-12): 1536 doi: 10.1016/j.applthermaleng.2007.08.009
    [6] Alva G, Lin Y X, Liu L K, et al. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review. Energy Build, 2017, 144: 276 doi: 10.1016/j.enbuild.2017.03.063
    [7] Schossig P, Henning H M, Gschwander S, et al. Micro-encapsulated phase-change materials integrated into construction materials. Sol Energy Mater Sol Cells, 2005, 89(2-3): 297 doi: 10.1016/j.solmat.2005.01.017
    [8] Zhang X X, Tao X M, Yick K L, et al. Structure and thermal stability of microencapsulated phase change materials. Colloid Polym Sci, 2004, 282(4): 330 doi: 10.1007/s00396-003-0925-y
    [9] Sari A, Alkan C, Karaipekli A, et al. Micro-encapsulated n-octacosane as phase change material for thermal energy storage. Sol Energy, 2009, 83(10): 1757 doi: 10.1016/j.solener.2009.05.008
    [10] De Luca M, Ferraro M M, Hartmann R, et al. Advances in use of capsule-based fluorescent sensors for measuring acidification of endocytic compartments in cells with altered expression of V-ATPase subunitV1G1. ACS Appl Mater Interfaces, 2015, 7(27): 15052 doi: 10.1021/acsami.5b04375
    [11] Guo P J, Weimer M S, Emery J D, et al. Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching. ACS Nano, 2017, 11(1): 693 doi: 10.1021/acsnano.6b07042
    [12] Ling Z Y, Zhang Z G, Shi G Q, et al. Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renew Sust Energ Rev, 2014, 31: 427 doi: 10.1016/j.rser.2013.12.017
    [13] Xu B, Li P W, Chan C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energ, 2015, 160: 286 doi: 10.1016/j.apenergy.2015.09.016
    [14] Zhong Y J, Zhao B C, Lin J, et al. Encapsulation of high-temperature inorganic phase change materials using graphite as heat transfer enhancer. Renew Energ, 2019, 133: 240 doi: 10.1016/j.renene.2018.09.107
    [15] Liu M, Bell S, Segarra M, et al. A eutectic salt high temperature phase change material: Thermal stability and corrosion of SS316 with respect to thermal cycling. Sol Energy Mater Sol Cells, 2017, 170: 1 doi: 10.1016/j.solmat.2017.05.047
    [16] Jiang Y F, Sun Y P, Bruno F, et al. Thermal stability of Na2CO3?Li2CO3 as a high temperature phase change material for thermal energy storage. Thermochim Acta, 2017, 650: 88 doi: 10.1016/j.tca.2017.01.002
    [17] Huang Z W, Xie N, Luo Z G, et al. Characterization of medium-temperature phase change materials for solar thermal energy storage using temperature history method. Sol Energy Mater Sol Cells, 2018, 179: 152 doi: 10.1016/j.solmat.2017.11.006
    [18] Kenisarin M M. High-temperature phase change materials for thermal energy storage. Renew Sust Energ Rev, 2010, 14(3): 955 doi: 10.1016/j.rser.2009.11.011
    [19] Hoshi A, Mills D R, Bittar A, et al. Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR. Sol Energy, 2005, 79(3): 332 doi: 10.1016/j.solener.2004.04.023
    [20] Nazir H, Batool M, Osorio F J B, et al. Recent developments in phase change materials for energy storage applications: a review. Int J Heat Mass Transfer, 2019, 129: 491 doi: 10.1016/j.ijheatmasstransfer.2018.09.126
    [21] Nardin G, Meneghetti A, Dal Magro F, et al. PCM-based energy recovery from electric arc furnaces. Appl Energ, 2014, 136: 947 doi: 10.1016/j.apenergy.2014.07.052
    [22] Fukahori R, Nomura T, Zhu C Y, et al. Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials. Appl Energ, 2016, 163: 1 doi: 10.1016/j.apenergy.2015.10.164
    [23] Sun J Q, Zhang R Y, Liu Z P, et al. Thermal reliability test of Al–34% Mg–6% Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling. Energy Convers Manage, 2007, 48(2): 619 doi: 10.1016/j.enconman.2006.05.017
    [24] Maruoka N, Akiyama T. Exergy recovery from steelmaking off-gas by latent heat storage for methanol production. Energy, 2006, 31(10-11): 1632 doi: 10.1016/j.energy.2005.05.023
    [25] Jiang Y F, Sun Y P, Liu M, et al. Eutectic Na2CO3–NaCl salt: a new phase change material for high temperature thermal storage. Sol Energy Mater Sol Cells, 2016, 152: 155 doi: 10.1016/j.solmat.2016.04.002
    [26] Jacob R, Liu M, Sun Y P, et al. Characterisation of promising phase change materials for high temperature thermal energy storage. J Energy Storage, 2019, 24: 100801 doi: 10.1016/j.est.2019.100801
    [27] Misra A K, Whittenberger J D. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 to 1400 K // 22nd Intersociety Energy Conversion Engineering Conference. Philadelphia, Pennsylvania, 1987: 188
    [28] Lund K O. Analysis of radiative and phase-change phenomena with application to space-based thermal energy storage. NASA Rep, 1991: 92
    [29] Shi T J, Hu P, Wang J T. Preparation of polyurea microcapsules containing phase change materials using microfluidics. Chem Select, 2020, 5(7): 2342
    [30] Feng L, Dong S P, Zhou H. n-Dodecanol nanocapsules with supramolecular lock shell layer for thermal energy storage. Chem Eng J, 2020, 389: 124483 doi: 10.1016/j.cej.2020.124483
    [31] Xu R, Xia X M, Wang W, et al. Infrared camouflage fabric prepared by paraffin phase change microcapsule with Good thermal insulting properties. Colloids Surf A, 2020, 591: 124591
    [32] Sahan N, Paksoy H. Designing behenic acid microcapsules as novel phase change material for thermal energy storage applications at medium temperature. Int J Energy Res, 2020, 44(5): 3922 doi: 10.1002/er.5193
    [33] Wang X G, Chen Z F, Xu W, et al. Capric acid phase change microcapsules modified with graphene oxide for energy storage. J Mater Sci, 2019, 54(24): 14834 doi: 10.1007/s10853-019-03954-2
    [34] Zhang H Z, Wang X D, Wu D Z. Silica encapsulation of n-octadecane via sol-gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J Colloid Interf Sci, 2010, 343(1): 246 doi: 10.1016/j.jcis.2009.11.036
    [35] Liu Z F, Chen Z H, Yu F. Preparation and characterization of microencapsulated phase change materials containing inorganic hydrated salt with silica shell for thermal energy storage. Sol Energy Mater Sol Cells, 2019, 200: art. No. 110004 doi: 10.1016/j.solmat.2019.110004
    [36] He F, Wang X D, Wu D Z. New approach for sol-gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor. Energy, 2014, 67: 223 doi: 10.1016/j.energy.2013.11.088
    [37] Li F N, Wang X D, Wu D Z. Fabrication of multifunctional microcapsules containing n-eicosane core and zinc oxide shell for low-temperature energy storage, photocatalysis, and antibiosis. Energy Convers Manage, 2015, 106: 873 doi: 10.1016/j.enconman.2015.10.026
    [38] Sakai H, Sheng N, Kurniawan A, et al. Fabrication of heat storage pellets composed of microencapsulated phase change material for high-temperature applications. Appl Energ, 2020, 265: 114673 doi: 10.1016/j.apenergy.2020.114673
    [39] Nomura T, Sheng N, Zhu C Y, et al. Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation. Appl Energ, 2017, 188: 9 doi: 10.1016/j.apenergy.2016.11.025
    [40] He F, Chao S, He X D, et al. Inorganic microencapsulated core/shell structure of Al?Si alloy micro-particles with silane coupling agent. Ceram Int, 2014, 40(5): 6865 doi: 10.1016/j.ceramint.2013.12.006
    [41] Nomura T, Zhu C Y, Sheng N, et al. Microencapsulation of metal-based phase change material for high-temperature thermal energy storage. Sci Rep, 2015, 5: 9117 doi: 10.1038/srep09117
    [42] Zhang M J, Han Z J, Gu H Z, et al. High Temperature Phase Change Thermal Storage Microcapsule of Dense Alumina Shell and Its Preparation Method: China Patent, CN201810202184.8. 2018-08-10

    張美杰, 韓藏娟, 顧華志, 等. 致密氧化鋁殼層高溫相變蓄熱微膠囊及其制備方法: 中國專利, CN201810202184.8. 2018-08-10
    [43] Zhang F, Lin J, Yang X, et al. The Invention Relates to a Method for Preparing Metal Coated High-Temperature Phase Change Thermal Storage Microcapsule and the Thermal Storage Microcapsule Obtained Therefrom: China Patent, CN201811197058.4. 2019-02-12

    張鋒, 林俊, 楊旭, 等. 一種制備金屬包殼高溫相變儲熱微膠囊的方法以及由此得到的儲熱微膠囊: 中國專利, CN201811197058.4. 2019-02-12
    [44] Yang Z Z, Zhang X, Wang Q. Metal and Alloy Phase Change Energy Storage Microcapsules and Their Preparation Methods: China Patent, CN201710129236.9. 2017-07-04

    楊振忠, 張行, 王倩. 金屬及合金相變儲能微膠囊及其制備方法: 中國專利, CN201710129236.9. 2017-07-04
    [45] Li J F, Lu W, Luo Z P, et al. Thermal stability of sodium nitrate microcapsules for high-temperature thermal energy storage. Sol Energy Mater Sol Cells, 2017, 171: 106 doi: 10.1016/j.solmat.2017.06.028
    [46] Takai-Yamashita C, Shinkai I, Fuji M, et al. Effect of water soluble polymers on formation of Na2SO4 contained SiO2 microcapsules by W/O emulsion for latent heat storage. Adv Powder Technol, 2016, 27(5): 2032 doi: 10.1016/j.apt.2016.07.012
    [47] Li J F, Lu W, Luo Z P, et al. Synthesis and thermal properties of novel sodium nitrate microcapsules for high-temperature thermal energy storage. Sol Energy Mater Sol Cells, 2017, 159: 440 doi: 10.1016/j.solmat.2016.09.051
    [48] Li J F, Luo Z P, Sun L L. The Invention Relates to an Inorganic Salt High-Temperature Phase Change Microcapsule and A Preparation Method Thereof: China Patent, CN201811091919.0. 2018-12-21

    李俊峰, 羅正平, 孫理理. 一種無機鹽高溫相變微膠囊及其制備方法: 中國專利, CN201811091919.0. 2018-12-21
    [49] Li J F, Luo Z P, Wang M, et al. The Invention Relates to A Phase Change Thermal Control Coating and A Preparation Method Thereof: China Patent, CN201910569905.3. 2019-11-05

    李俊峰, 羅正平, 王萌, 等. 一種相變熱控涂層及其制備方法: 中國專利, CN201910569905.3. 2019-11-05
    [50] Liu J, Li J F, Luo Z P, et al. A novel multiwalled LiF@GO@SiO2 microcapsule with high phase change temperature. Sol Energy Mater Sol Cells, 2019, 203: art. No. 110188 doi: 10.1016/j.solmat.2019.110188
    [51] Zhang Q Y, Liu J, Liu Y B, et al. A Kind of High Temperature and High Enthalpy Phase Change Material Multi-Wall Microcapsule and Its Preparation Method: China Patent, CN201910483692.2. 2019-08-16

    張秋禹, 劉錦, 劉毅彬, 等. 一種高溫高焓值相變材料多壁結構微膠囊及制備方法: 中國專利, CN201910483692.2. 2019-08-16
    [52] Zhang G C, Li J Q, Chen Y F, et al. Encapsulation of copper-based phase change materials for high temperature thermal energy storage. Sol Energy Mater Sol Cells, 2014, 128: 131 doi: 10.1016/j.solmat.2014.05.012
    [53] He F, Song G P, He X D, et al. Structural and phase change characteristics of inorganic microencapsulated core/shell Al-Si/Al2O3 micro-particles during thermal cycling. Ceram Int, 2015, 41(9): 10689 doi: 10.1016/j.ceramint.2015.05.001
    [54] Sheng N, Zhu C Y, Sakai H, et al. Synthesis of Al–25 wt% Si@Al2O3@Cu microcapsules as phase change materials for high temperature thermal energy storage. Sol Energy Mater Sol Cells, 2019, 191: 141 doi: 10.1016/j.solmat.2018.11.013
    [55] Wang X F, Li C H, Zhao T. Fabrication and characterization of poly(melamine-formaldehyde)/silicon carbide hybrid microencapsulated phase change materials with enhanced thermal conductivity and light-heat performance. Sol Energy Mater Sol Cells, 2018, 183: 82 doi: 10.1016/j.solmat.2018.03.019
    [56] Liao H H, Chen W H, Liu Y, et al. A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability. Compos Sci Technol, 2020, 189: 108010 doi: 10.1016/j.compscitech.2020.108010
  • 加載中
圖(6) / 表(1)
計量
  • 文章訪問數:  1748
  • HTML全文瀏覽量:  1247
  • PDF下載量:  147
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-07-21
  • 刊出日期:  2021-01-25

目錄

    /

    返回文章
    返回