<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

管道內氣液兩相流流激力研究進展

何兆洋 劉海瀟 何利民 王丹 赫松濤

何兆洋, 劉海瀟, 何利民, 王丹, 赫松濤. 管道內氣液兩相流流激力研究進展[J]. 工程科學學報, 2021, 43(1): 129-136. doi: 10.13374/j.issn2095-9389.2020.07.14.001
引用本文: 何兆洋, 劉海瀟, 何利民, 王丹, 赫松濤. 管道內氣液兩相流流激力研究進展[J]. 工程科學學報, 2021, 43(1): 129-136. doi: 10.13374/j.issn2095-9389.2020.07.14.001
HE Zhao-yang, LIU Hai-xiao, HE Li-min, WANG Dan, HE Song-tao. Research progress of fluctuating force caused by internal gas-liquid flow[J]. Chinese Journal of Engineering, 2021, 43(1): 129-136. doi: 10.13374/j.issn2095-9389.2020.07.14.001
Citation: HE Zhao-yang, LIU Hai-xiao, HE Li-min, WANG Dan, HE Song-tao. Research progress of fluctuating force caused by internal gas-liquid flow[J]. Chinese Journal of Engineering, 2021, 43(1): 129-136. doi: 10.13374/j.issn2095-9389.2020.07.14.001

管道內氣液兩相流流激力研究進展

doi: 10.13374/j.issn2095-9389.2020.07.14.001
基金項目: 國家科技重大專項資助項目(2016ZX05028-004-003);中央高校基本科研業務費專項資助項目(15CX05006A)
詳細信息
    通訊作者:

    E-mail: upcmpfs@163.com

  • 中圖分類號: TE832

Research progress of fluctuating force caused by internal gas-liquid flow

More Information
  • 摘要: 管道內氣液兩相流廣泛存在于核工業、化工業以及石油運輸等多個領域中,其誘發的流激力會引起管道振動,導致管系的疲勞破壞。本文分別從流激力發生機理、影響因素及計算模型出發,對流激力研究進展進行綜述。研究表明:動量通量的改變被認為是引起流激力的最主要原因,管道內壓力波動、液塞的脈動沖擊、起伏不定的液波等因素同樣會對流激力的產生做出貢獻,針對不同流型建立完整的流激力發生機理的理論體系,是流激力機理研究方面的重點發展方向。在不同流型下,流激力展現出不同的波動特征,目前研究所針對的管道大多是單獨的水平管或立管管道,開展多種集輸–立管管道系統中流激力的研究將具有重要的工程意義。關于流激力經驗模型和理論模型的建立逐漸完善,計算流體力學(Computational fluid dynamics,簡稱CFD)軟件能夠同時對流場和流激力大小進行模擬計算,優勢明顯,是一種重要的計算手段,對CFD軟件計算結果的準確性進行研究,對比優選有效的CFD計算模擬方法,將具有重要科研價值。

     

  • 圖  1  動量通量與受力值的RMS值對比[25]

    Figure  1.  Comparison of RMS values of momentum ?uxes and forces[25]

    圖  2  不同作用項之間的比較[26]

    Figure  2.  Evaluation of different terms[26]

    圖  3  功率譜密度曲線的簡單表示[22]

    Figure  3.  Simple power spectral density curve[22]

    圖  4  修正后的功率密度曲線[24]

    Figure  4.  Modified power spectral density curve[24]

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Karim H, Ancian L. Experimental analysis of discontinuities in single phase flow-vibration and pressure fluctuation measurements // SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Jakarta, 2017: SPE-186336-MS
    [2] Ortiz-Vidal L E, Mureithi N W, Rodriguez O M H. Vibration response of a pipe subjected to two-phase flow: analytical formulations and experiments. Nucl Eng Des, 2017, 313: 214
    [3] Hara F. Two-phase-flow-induced vibrations in a horizontal pulping system. Bull JSME, 1977, 20(142): 419
    [4] Cargnelutti M F, Belfroid S P C, Schiferli W. Two-phase flow-induced forces on bends in small scale tubes // Proceedings of the ASME 2009 Pressure Vessels and Piping Conference. Volume 4: Fluid-Structure Interaction. Prague, 2009: 369
    [5] Riverin J L, de Langre E, Pettigrew M J. Fluctuating forces caused by internal two-phase flow on bends and tees. J Sound Vib, 2006, 298(4-5): 1088
    [6] Riverin J L, Pettigrew M J. Fluctuating forces in U-tubes subjected to internal two-phase flow // Proceedings of the ASME 2005 Pressure Vessels and Piping Conference. Volume 4: Fluid Structure Interaction. Denver, 2005: 547
    [7] Parsi M, Nair A, Kara M, et al. Condition based assessment of subsea rigid jumpers using advanced analytical model // 10th North American Conference on Multiphase Technology. Banff, 2016: BHR-2016-245
    [8] Smeulers J P M, Diez N G, Slot H. Flow induced vibration in subsea production systems // SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition. Moscow, 2012: SPE-160727-MS
    [9] Wang L, Yang Y R, Li Y X, et al. Resonance analyses of a pipeline-riser system conveying gas-liquid two-phase flow with flow-pattern evolution. Int J Press Vessels Pip, 2018, 161: 22
    [10] Liu H G, Kong J Y, Li G F, et al. Inquiry into vibration analysis and control of fluid filled pipe system. J Hubei Univ Technol, 2005, 20(3): 78 doi: 10.3969/j.issn.1003-4684.2005.03.030

    劉懷廣, 孔建益, 李公法, 等. 充液管道系統振動分析與控制的探討. 湖北工業大學學報, 2005, 20(3):78 doi: 10.3969/j.issn.1003-4684.2005.03.030
    [11] Jia D. Slug flow induced vibration in a pipeline span, a jumper and a riser section // Offshore Technology Conference. Houston, 2012: OTC-22935-MS
    [12] Tay B L, Thorpe R B. Statistical analysis of the hydrodynamic forces acting on pipe bends in gas–liquid slug flow and their relation to fatigue. Chem Eng Res Des, 2015, 104: 457
    [13] Pettigrew M J, Taylor C E, Fisher N J, et al. Flow-induced vibration: recent findings and open questions. Nucl Eng Des, 1998, 185(2-3): 249
    [14] Swindell R. Hidden integrity threat looms in subsea pipework vibrations. Offshore, 2011, 71(9): 78
    [15] de Langre E, Villard B. An upper bound on random buffeting forces caused by two-phase flows across tubes. J Fluids Struct, 1998, 12(8): 1005
    [16] Sakaguchi T, Ozawa M, Hamaguchi H, et al. Analysis of the impact force by a transient liquid slug flowing out of a horizontal pipe. Nucl Eng Des, 1987, 99: 63
    [17] Mulcahy T M, Lawrence W, Wambsganss M W. Dynamic surface-pressure instrumentation for rods in parallel flow. Exp Mech, 1982, 22(1): 31
    [18] Chu I C, Chung H J, Lee S. Flow-induced vibration of nuclear steam generator U-tubes in two-phase flow. Nucl Eng Des, 2011, 241(5): 1508
    [19] Sasakawa T, Serizawa A, Kawara Z. Fluid-elastic vibration in two-phase cross flow. Exp Therm Fluid Sci, 2005, 29(3): 403
    [20] Pettigrew M J, Zhang C, Mureithi N W, et al. Detailed flow and force measurements in a rotated triangular tube bundle subjected to two-phase cross-flow. J Fluids Struct, 2005, 20(4): 567
    [21] Miwa S, Mori M, Hibiki T. Two-phase flow induced vibration in piping systems. Prog Nucl Energy, 2015, 78: 270
    [22] Yih T S, Griffith P. Unsteady Momentum Fluxes in Two-phase Flow and The Vibration of Nuclear Reactor Components [Dissertation]. Massachusetts: Massachusetts Institute of Technology, 1968
    [23] Cargnelutti M F, Belfroid S P C, Schiferli W, et al. Multiphase fluid structure interaction in bends and T-joints // Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASME 2010 Pressure Vessels and Piping Conference: Volume 4. Bellevue, 2010: 75
    [24] Giraudeau M, Mureithi N W, Pettigrew M J. Two-phase flow-induced forces on piping in vertical upward flow: excitation mechanisms and correlation models. J Pressure Vessel Technol, 2013, 135(3): 030907
    [25] Liu Y, Miwa S, Hibiki T, et al. Experimental study of internal two-phase flow induced fluctuating force on a 90° elbow. Chem Eng Sci, 2012, 76: 173
    [26] Miwa S, Liu Y, Hibiki T, et al. Two-phase flow induced force fluctuations on pipe bend // Proceedings of the 2014 22nd International Conference on Nuclear Engineering. Volume 2B: Thermal Hydraulics. Prague, Czech Republic, 2014: V02BT09A007
    [27] Miwa S, Hibiki T, Mori M. Analysis of flow-induced vibration due to stratified wavy two-phase flow. J Fluids Eng, 2016, 138(9): 091302
    [28] de Henau V, Raithby G D. A study of terrain-induced slugging in two-phase flow pipelines. Int J Multiphase Flow, 1995, 21(3): 365
    [29] Al-Safran E. Investigation and prediction of slug frequency in gas/liquid horizontal pipe flow. J Petrol Sci Eng, 2009, 69(1-2): 143
    [30] Peddu A, Chakraborty S, Das P K. Visualization and flow regime identification of downward air–water flow through a 12 mm diameter vertical tube using image analysis. Int J Multiphase Flow, 2018, 100: 1
    [31] Barnea D, Shoham O, Taitel Y. Flow pattern characterization in two phase flow by electrical conductance probe. Int J Multiphase Flow, 1980, 6(5): 387
    [32] Taitel Y, Lee N, Dukler A E. Transient gas-liquid flow in horizontal pipes: Modeling the flow pattern transitions. AIChE J, 1978, 24(5): 920
    [33] Hewitt G F. Measurement of Two-Phase Flow Parameters. London and New York: Academic Press, 1978
    [34] Chen Z Y, He L M. Experimental study on measuring characteristics of slug flow in horizontal pipe. J Univ Petrol China Nat Sci, 2003, 27(1): 67

    陳振瑜, 何利民. 水平管段塞流特征參數測量方法的試驗研究. 石油大學學報: 自然科學版, 2003, 27(1):67
    [35] Barnea D, Brauner N. Holdup of the liquid slug in two phase intermittent flow. Int J Multiphase Flow, 1985, 11(1): 43
    [36] Dukler A E, Hubbard M G. A model for gas-liquid slug flow in horizontal and near horizontal tubes. Ind Eng Chem Fundamen, 1975, 14(4): 337
    [37] Zhu H J, Gao Y, Zhao H L. Experimental investigation on the flow-induced vibration of a free-hanging flexible riser by internal unstable hydrodynamic slug flow. Ocean Eng, 2018, 164: 488
    [38] Wang L, Yang Y R, Li Y X, et al. Dynamic behaviours of horizontal gas-liquid pipes subjected to hydrodynamic slug flow: modelling and experiments. Int J Press Vessels Pip, 2018, 161: 50
    [39] Al-Hashimy Z, Al-Kayiem H, Time R W. Experimental investigation on the vibration induced by slug flow in horizontal pipe. J Eng Appl Sci, 2016, 11(20): 12134
    [40] Xing L, Yeung H, Lo S. Investigation of slug flow induced forces on pipe bends applying STAR-OLGA coupling // 15th International Conference on Multiphase Production Technology. Cannes, 2011: BHR-2011-H2
    [41] Chen B C M. A marine riser with internal flow-induced vibration // Offshore Technology Conference. Houston, Texas, 1992: OTC-6893-MS
    [42] Ortega A, Rivera A, Larsen C M. Flexible riser response induced by combined slug flow and wave loads // Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. Volume 4B: Pipeline and Riser Technology. Nantes, 2013: V04BT04A008
    [43] Swindell R, Belfroid S. Internal flow induced pulsation of flexible risers // Offshore Technology Conference. Houston, Texas, 2007: OTC-18895-MS
    [44] Zhou X J, Gong J, Chen J. Analysis on the static/dynamic load at the elbow in riser system of subsea pipeline. China Offshore Oil Gas, 2005, 17(4): 268 doi: 10.3969/j.issn.1673-1506.2005.04.012

    周曉軍, 宮敬, 陳杰. 海底管道立管系統彎頭部位靜、動荷載分析. 中國海上油氣, 2005, 17(4):268 doi: 10.3969/j.issn.1673-1506.2005.04.012
    [45] Liu C, Li Y X, Wang L, et al. Experimental study on two-phase flow and vibration characteristics of marine riser. China Petrol Mach, 2016, 44(4): 46

    劉昶, 李玉星, 王琳, 等. 海洋立管兩相流動及管道振動特性試驗研究. 石油機械, 2016, 44(4):46
    [46] Lu Y J, Liang C, Manzano-Ruiz J J, et al. FSI analysis of flow-Induced vibration in subsea jumper subject to downstream slug and ocean current // Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. Volume 2: CFD and VIV. San Francisco, 2014: V002T08A062
    [47] Locharla H, Al Awadhi I, Narayana S, et al. Flow induced vibration in multi phase piping systems - successful mitigation // Abu Dhabi International Petroleum Exhibition & Conference. Abu Dhabi, 2017: SPE-188386-MS
    [48] Giraudeau M, Pettigrew M J, Mureithi N W. Two-phase flow excitation forces on a vertical U-bend tube // Proceedings of the ASME 2011 Pressure Vessels and Piping Conference. Volume 4: Fluid-Structure Interaction. Baltimore, Maryland, 2011: 103
    [49] Li W S, Guo L J, Xie X D. Effects of a long pipeline on severe slugging in an S-shaped riser. Chem Eng Sci, 2017, 171: 379
    [50] Malekzadeh R, Henkes R A W M, Mudde R F. Severe slugging in a long pipeline–riser system: experiments and predictions. Int J Multiphase Flow, 2012, 46: 9
    [51] Mokhatab S. Severe slugging in a catenary-shaped riser: Experimental and simulation studies. Petrol Sci Technol, 2007, 25(6): 719
    [52] Montgomery J A, Yeung H C. The stability of fluid production from a flexible riser. J Energy Resour Technol, 2002, 124(2): 83
    [53] Xie C, Guo L J, Li W S, et al. The influence of backpressure on severe slugging in multiphase flow pipeline-riser systems. Chem Eng Sci, 2017, 163: 68
    [54] Massey B S, Wardsmith J. Mechanics of Fluids. 9nd Ed. Boca Raton: CRC Press, 2012
    [55] Beggs D H, Brill J P. A study of two-phase flow in inclined pipes. J Petrol Technol, 1973, 25(5): 607
    [56] Tay B L, Thorpe R B. Hydrodynamic forces acting on pipe bends in gas–liquid slug flow. Chem Eng Res Des, 2014, 92(5): 812
    [57] Tay B L, Thorpe R B. Effects of liquid physical properties on the forces acting on a pipe bend in gas–liquid slug flow. Chem Eng Res Des, 2004, 82(3): 344
    [58] Pontaza J P, Abuali B, Brown G W, et al. Flow-induced vibrations of subsea piping: A screening approach based on numerical simulation // SPE Offshore Europe Oil and Gas Conference and Exhibition. Aberdeen, 2013: SPE-166661-MS
    [59] Li F Q, Cao J, Duan M L, et al. Two-phase flow induced vibration of subsea span pipeline // The 26th International Ocean and Polar Engineering Conference. Rhodes, 2016: ISOPE-I-16-333
    [60] Tian H J, Xing Y, Song C Y, et al. Numerical simulation of flue gas desulfurization by horizontal spray tower. Chin J Eng, 2018, 40(1): 17

    田海軍, 邢奕, 宋存義, 等. 臥式噴淋塔煙氣脫硫的數值模擬. 工程科學學報, 2018, 40(1):17
    [61] Yuan F, Yang G, Xu A J, et al. Thermal state simulation analysis of molten iron ladle based on different insulation measures. Chin J Eng, 2018, 40(1): 31

    袁飛, 楊光, 徐安軍, 等. 基于不同保溫措施下的鐵水包熱狀態模擬分析. 工程科學學報, 2018, 40(1):31
  • 加載中
圖(4)
計量
  • 文章訪問數:  1673
  • HTML全文瀏覽量:  852
  • PDF下載量:  80
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-07-14
  • 刊出日期:  2021-01-25

目錄

    /

    返回文章
    返回