<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

H13鋼中一次碳化物的特征及控制進展

黃宇 成國光 鮑道華

黃宇, 成國光, 鮑道華. H13鋼中一次碳化物的特征及控制進展[J]. 工程科學學報, 2020, 42(10): 1244-1253. doi: 10.13374/j.issn2095-9389.2020.05.24.002
引用本文: 黃宇, 成國光, 鮑道華. H13鋼中一次碳化物的特征及控制進展[J]. 工程科學學報, 2020, 42(10): 1244-1253. doi: 10.13374/j.issn2095-9389.2020.05.24.002
HUANG Yu, CHENG Guo-guang, BAO Dao-hua. Current status of the characteristics and control of primary carbides in H13 steel[J]. Chinese Journal of Engineering, 2020, 42(10): 1244-1253. doi: 10.13374/j.issn2095-9389.2020.05.24.002
Citation: HUANG Yu, CHENG Guo-guang, BAO Dao-hua. Current status of the characteristics and control of primary carbides in H13 steel[J]. Chinese Journal of Engineering, 2020, 42(10): 1244-1253. doi: 10.13374/j.issn2095-9389.2020.05.24.002

H13鋼中一次碳化物的特征及控制進展

doi: 10.13374/j.issn2095-9389.2020.05.24.002
基金項目: 國家自然科學基金資助項目(51874034)
詳細信息
    通訊作者:

    E-mail: chengguoguang@metall.ustb.edu.cn

  • 中圖分類號: TG142.71

Current status of the characteristics and control of primary carbides in H13 steel

More Information
  • 摘要: 首先結合H13鋼的成分特點肯定了H13鋼優異的材料性能,隨后總結了一次碳化物與H13鋼使用壽命之間的關系。進一步系統地論述和研究了H13鋼中一次碳化物的特征,包括二維和三維形貌、熱穩定性、析出機理等。最后對比了4種H13鋼中一次碳化物的控制手段,包括成分優化、冷速控制、Mg處理和稀土處理。相關論述和研究工作能夠對鋼中一次碳化物的合理優化起到一定的啟發作用。

     

  • 圖  1  H13鋼的材料性能與溫度之間的關系。(a)硬度;(b)抗拉強度和屈服強度;(c)伸長率和斷面收縮率;(d)沖擊韌性

    Figure  1.  Variation of temperature with material properties of H13 steel: (a) hardness; (b) yield and tensile strength; (c) elongation and reduction of area; (d) impact toughness

    圖  2  模具鋼的使用壽命與一次碳化物之間的關系. (a)一次碳化物的體積分數與疲勞強度之間的關系;(b)碳化物尺寸與應力應變次數之間的關系

    Figure  2.  Varaition of service life of die steel with primary carbides: (a) variation of the volume fraction of carbide with the fatigue strength; (b) variation of the number of cycles to failure with the carbide size

    圖  3  H13鋼中一次碳化物的二維形貌

    Figure  3.  Two-dimensional morphology of primary carbide in H13 steel

    圖  4  H13鋼中一次碳化物的三維形貌

    Figure  4.  Three-dimensional morphology of primary carbide in H13 steel

    圖  5  H13鋼中最后凝固區域的元素分布

    Figure  5.  Elements mapping of the last-to-solidify region in H13 steel

    圖  6  H13鋼錠中一次碳化物的分布

    Figure  6.  Distribution of primary carbide in H13 ingot

    圖  7  H13鋼中一次碳化物的熱穩定性

    Figure  7.  Thermal stability of primary carbide in H13 steel

    圖  8  Si元素的質量分數對于碳化物的影響。(a)淬火后未溶解的碳化物;(b)二次碳化物

    Figure  8.  Effect of Si content on the carbides in H13 steel: (a) undissolved carbides during quenching; (b) secondary carbides

    圖  9  冷卻速率與H13鋼的沖擊性能之間的關系

    Figure  9.  Variation of cooling rate with the impact value

    表  1  Mg元素的質量分數對一次碳化物特征的影響[32]

    Table  1.   Effect of Mg content on the characteristics of the primary carbide

    Mg content/10?6NumberArea/μm2Maximal size/μm
    3891986.4810.05
    14721474.739.27
    1856887.428.56
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Starling C M D, Branco J R T. Thermal fatigue of hot work tool steel with hard coatings. Thin Solid Films, 1997, 308-309: 436 doi: 10.1016/S0040-6090(97)00600-7
    [2] Li G B, Ling C, Li X Z. Study on thermal fatigue of 4Cr5MoSiV1 and 3Cr2W8V steels. Iron Steel, 1997, 32(4): 51

    李國彬, 凌超, 李香芝. 4Cr5MoSiV1鋼和3Cr2W8V鋼熱疲勞壽命的研究. 鋼鐵, 1997, 32(4):51
    [3] Yoshida J, Katsumata M, Yamazaki Y. Effect of primary carbide on fatigue life in die steel for cold working. Tetsu-To-Hagane, 1998, 84(1): 79 doi: 10.2355/tetsutohagane1955.84.1_79

    吉田潤二, 勝亦正昭, 山崎善夫. 冷間金型用鋼の疲労壽命に及ぼす-次炭化物の影響. 鉄と鋼, 1998, 84(1):79 doi: 10.2355/tetsutohagane1955.84.1_79
    [4] Ozaki K. Effect of the distribution of primary carbide on fatigue strength of cold work die steels. Denki-Seiko, 2005, 76(4): 249 doi: 10.4262/denkiseiko.76.249

    尾崎公造. 冷間金型用鋼の疲労壽命に及ぼす-次炭化物分布の影響. 電気製鋼, 2005, 76(4):249 doi: 10.4262/denkiseiko.76.249
    [5] Xie Y, Cheng G G, Chen L, et al. Mechanism of generation of large (Ti, Nb, V)(C, N)-type precipitates in H13+Nb tool steel. Int J Miner Metall Mater, 2016, 23(11): 1264 doi: 10.1007/s12613-016-1348-3
    [6] Xie Y, Cheng G G, Chen L, et al. The degeneration of the heterogeneous nucleation for the large precipitates (Ti, Nb, V)(C, N) in ESR H13+Nb tool steel with low-MgO slag. Metall Res Technol, 2016, 113(2): 206 doi: 10.1051/metal/2016002
    [7] Liu J H, Yang Y, Zhuang C L, et al. Inclusion distribution in H13 ingots. J Univ Sci Technol Beijing, 2011, 33(Suppl1): 179

    劉建華, 陽燕, 莊昌凌, 等. H13模鑄鋼錠中夾雜物的分布解剖. 北京科技大學學報, 2011, 33(增刊1): 179
    [8] Li J, Li J, Wang L L, et al. Study on carbide in forged and annealed H13 hot work die steel. High Temp Mater Processes, 2015, 34(6): 593
    [9] Qi Y F, Li J, Shi C B, et al. Effect of directional solidification of electroslag remelting on the microstructure and primary carbides in an austenitic hot-work die steel. J Mater Process Technol, 2017, 249: 32 doi: 10.1016/j.jmatprotec.2017.05.034
    [10] Huang Y, Cheng G G, Li S J, et al. Precipitation behavior of large primary carbides in cast H13 steel. Steel Res Int, 2019, 90(7): 1900035 doi: 10.1002/srin.201900035
    [11] Mao M T, Guo H J, Wang F, et al. Chemical composition and structural identification of primary carbides in as-cast H13 steel. Int J Miner Metall Mater, 2019, 26(7): 839 doi: 10.1007/s12613-019-1796-7
    [12] Mao M T, Wang F, Sun X L, et al. In situ research of partial melt in as-cast H13 steel at elevated temperature. Ironmaking Steelmaking, 2020, 47(2): 159 doi: 10.1080/03019233.2018.1498760
    [13] Xie Y, Cheng G G, Chen L, et al. Characteristics and generating mechanism of large precipitates in Nb–Ti–microalloyed H13 tool steel. ISIJ Int, 2016, 56(6): 995 doi: 10.2355/isijinternational.ISIJINT-2015-569
    [14] Xie Y, Cheng G G, Meng X L, et al. Precipitation behavior of primary precipitates in Ti–microalloyed H13 tool steel. ISIJ Int, 2016, 56(11): 1996 doi: 10.2355/isijinternational.ISIJINT-2016-199
    [15] Xie Y, Cheng G G, Chen L, et al. Generating mechanism of large heterogeneous carbonitrides with multiple layers in H13+Nb bar. Steel Res Int, 2017, 88(1): 1600119 doi: 10.1002/srin.201600119
    [16] Xie Y, Cheng G G, Chen L, et al. The characteristics and generating mechanism of large precipitates in Ti-containing H13 tool steel. High Temp Mater Processes, 2017, 36(2): 189 doi: 10.1515/htmp-2015-0177
    [17] Huang Y, Cheng G G, Li S J, et al. Distribution characteristics and thermal stability of primary carbide in cast Ce–H13 steel. ISIJ Int, 2020, 60(2): 267 doi: 10.2355/isijinternational.ISIJINT-2019-364
    [18] Pei Y K, Ma D S, Liu B S, et al. Effect of forging ratio on microstructure and mechanical property of H13 steel. Iron Steel, 2012, 47(2): 81

    裴悅凱, 馬黨參, 劉寶石, 等. 鍛造比對H13鋼組織和力學性能的影響. 鋼鐵, 2012, 47(2):81
    [19] Xie Y, Cheng G G, Meng X L, et al. Thermal stability of primary elongated V-rich carbonitrides in H13 tool steel. Metall Res Technol, 2017, 114(2): 206 doi: 10.1051/metal/2016072
    [20] Mesquita R A, Barbosa C A, Morales E V, et al. Effect of silicon on carbide precipitation after tempering of H11 hot work steels. Metall Mater Trans A, 2011, 42(2): 461 doi: 10.1007/s11661-010-0430-0
    [21] Mesquita R A, Kestenbach H J. On the effect of silicon on toughness in recent high quality hot work steels. Mater Sci Eng A, 2011, 528(13-14): 4856 doi: 10.1016/j.msea.2011.02.065
    [22] Delagnes D, Lamesle P, Mathon M H, et al. Influence of silicon content on the precipitation of secondary carbides and fatigue properties of a 5% Cr tempered martensitic steel. Mater Sci Eng A, 2005, 394(1-2): 435 doi: 10.1016/j.msea.2004.11.050
    [23] Sudoh K I. Influence of C, Si, Mn, Cr, Mo and V on the characteristics of 5% chromium hot-work die steel. Denki-Seiko, 1989, 60(4): 367 doi: 10.4262/denkiseiko.60.367

    須藤興一. 5%Cr系熱間ダイス鋼の特性に及ぼすC, Si, Mn, Cr, Mo, Vの影響. 電気製鋼, 1989, 60(4):367 doi: 10.4262/denkiseiko.60.367
    [24] Umino M, Sera T, Kondo K, et al. Effect of silicon content on tempered hardness, high temperature strength and toughness of hot working tool steels. Tetsu-to-Hagane, 2003, 89(6): 673 doi: 10.2355/tetsutohagane1955.89.6_673

    海野正英, 瀬羅知暁, 近藤邦夫, 等. 熱間工具鋼の焼戻し硬さ, 高溫強度と靭性に及ぼすシリコン量の影響. 鉄と鋼, 2003, 89(6):673 doi: 10.2355/tetsutohagane1955.89.6_673
    [25] Fujii T, Matsuda Y. Effect of Si content on the machinability of hot working die steels. Denki-Seiko, 2000, 71(2): 119 doi: 10.4262/denkiseiko.71.119

    藤井利光, 松田幸紀. 熱間工具鋼の被削性におよぼすSi量の影響. 電気製鋼, 2000, 71(2):119 doi: 10.4262/denkiseiko.71.119
    [26] Fujii T, Matsuda Y. Effect of Si content and hardness on the machinability of hot working die steels. Denki-Seiko, 2003, 74(2): 83 doi: 10.4262/denkiseiko.74.83

    藤井利光, 松田幸紀. 熱間工具鋼の被削性におよぼす Si および硬さの影響. 電気製鋼, 2003, 74(2):83 doi: 10.4262/denkiseiko.74.83
    [27] Mao M T, Guo H J, Wang F, et al. Effect of cooling rate on the solidification microstructure and characteristics of primary carbides in H13 steel. ISIJ Int, 2019, 59(5): 848 doi: 10.2355/isijinternational.ISIJINT-2018-524
    [28] History of carbide at grain boundary and its influence on impact property of SKD61. Denki-Seiko, 2018, 89(2): 101

    河野正道. 粒界での炭化物の歴史とそのSKD61の衝撃特性への影響. 電気製鋼, 2018, 89(2): 101
    [29] Wu Z, Li J, Shi C B, et al. Effect of magnesium addition on inclusions in H13 die steel. Int J Miner Metall Mater, 2014, 21(11): 1062 doi: 10.1007/s12613-014-1010-x
    [30] Li J, Li J, Shi C B, et al. Effect of trace magnesium on carbide improvement in H13 steel. Can Metall Q, 2016, 55(3): 321 doi: 10.1179/1879139515Y.0000000030
    [31] Takata R, Yang J, Kuwabara M. Characteristics of inclusions generated during Al–Mg complex deoxidation of molten steel. ISIJ Int, 2007, 47(10): 1379 doi: 10.2355/isijinternational.47.1379
    [32] He B, Li J, Shi C B, et al. Effect of Mg addition on carbides in H13 steel during electroslag remelting process. Metall Res Technol, 2018, 115(5): 501 doi: 10.1051/metal/2018071
    [33] Wang L M, Lin Q, Ji J W, et al. New study concerning development of application of rare earth metals in steels. J Alloys Compd, 2006, 408-412: 384 doi: 10.1016/j.jallcom.2005.04.090
    [34] Song C B, Seo I K, Park H G. Effect of rare earth metals addition on the solidification characteristics of 5Cr hot working tool steel. J Korean Inst Met Mater, 1996, 34(8): 1021

    宋致褔, 徐仁敎, 林炫均. 5Cr? ?????? ????? ??? ????? ?????. ?? ?? ?? ???, 1996, 34(8):1021
    [35] Song C B, So J W, Park H G. Effect of rare earth metals addition on the impact toughness and machinability of 5Cr hot working tool steel. J Korean Inst Met Mater, 1995, 33(8): 1010

    宋致褔, 蘇鎭王, 林炫均. 5Cr? ?????? ???? ??? ??? ????? ??? ??. ?? ?? ?? ???, 1995, 33(8):1010
    [36] Lan J, He J J, Ding W J, et al. Effect of rare earth metals on the microstructure and impact toughness of a cast 0.4C–5Cr–1.2Mo–1.0V steel. ISIJ Int, 2000, 40(12): 1275 doi: 10.2355/isijinternational.40.1275
    [37] Huang Y, Cheng G G, Li S J, et al. Effect of cerium on the behavior of inclusions in H13 steel. Steel Res Int, 2018, 89(12): 1800371 doi: 10.1002/srin.201800371
    [38] Fu H G, Xiao Q, Li Y X. A study of the microstructures and properties of Fe–V–W–Mo alloy modified by rare earth. Mater Sci Eng A, 2005, 395(1-2): 281 doi: 10.1016/j.msea.2004.12.029
    [39] Yang J, Zou D N, Li X M, et al. Effect of rare earth on microstructures and properties of high speed steel with high carbon content. J Iron Steel Res Int, 2007, 14(1): 47 doi: 10.1016/S1006-706X(07)60011-9
    [40] Liu Q X, Lu D P, Lu L, et al. Effect of mischmetal on as-cast microstructure and mechanical properties of M2 high speed steel. J Iron Steel Res Int, 2015, 22(3): 245 doi: 10.1016/S1006-706X(15)60037-1
    [41] Wang M J, Li Y M, Wang Z X, et al. Effect of rare earth elements on the thermal cracking resistance of high speed steel rolls. J Rare Earths, 2011, 29(5): 489 doi: 10.1016/S1002-0721(10)60485-1
    [42] Xu Z M. Influence of Ce and Al on nodularization of eutectic in austenite–bainite steel. Mater Res Bull, 2000, 35(8): 1261 doi: 10.1016/S0025-5408(00)00319-6
    [43] Gao J Z, Fu P X, Liu H W, et al. Effects of rare earth on the microstructure and impact toughness of H13 steel. Metals, 2015, 5(1): 383 doi: 10.3390/met5010383
    [44] Zeli? K, Burja J, McGuiness P J, et al. Effect of rare earth elements on the morphology of eutectic carbides in AISI D2 tool steels: experimental and modelling approaches. Sci Rep, 2018, 8: 9233 doi: 10.1038/s41598-018-27658-w
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  3384
  • HTML全文瀏覽量:  893
  • PDF下載量:  108
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-05-24
  • 刊出日期:  2020-10-25

目錄

    /

    返回文章
    返回