<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

雙孔聚能爆破煤層裂隙擴展貫通機理

郭德勇 趙杰超 朱同功 張超

郭德勇, 趙杰超, 朱同功, 張超. 雙孔聚能爆破煤層裂隙擴展貫通機理[J]. 工程科學學報, 2020, 42(12): 1613-1623. doi: 10.13374/j.issn2095-9389.2020.05.19.001
引用本文: 郭德勇, 趙杰超, 朱同功, 張超. 雙孔聚能爆破煤層裂隙擴展貫通機理[J]. 工程科學學報, 2020, 42(12): 1613-1623. doi: 10.13374/j.issn2095-9389.2020.05.19.001
GUO De-yong, ZHAO Jie-chao, ZHU Tong-gong, ZHANG Chao. Crack propagation and coalescence mechanism of double-hole cumulative blasting in coal seam[J]. Chinese Journal of Engineering, 2020, 42(12): 1613-1623. doi: 10.13374/j.issn2095-9389.2020.05.19.001
Citation: GUO De-yong, ZHAO Jie-chao, ZHU Tong-gong, ZHANG Chao. Crack propagation and coalescence mechanism of double-hole cumulative blasting in coal seam[J]. Chinese Journal of Engineering, 2020, 42(12): 1613-1623. doi: 10.13374/j.issn2095-9389.2020.05.19.001

雙孔聚能爆破煤層裂隙擴展貫通機理

doi: 10.13374/j.issn2095-9389.2020.05.19.001
基金項目: 國家自然科學基金聯合基金資助項目(U1704242);國家自然科學基金資助項目(41430640)
詳細信息
    通訊作者:

    E-mail:kjkfg@cumtb.edu.cn

  • 中圖分類號: TD712

Crack propagation and coalescence mechanism of double-hole cumulative blasting in coal seam

More Information
  • 摘要: 針對雙孔聚能爆破孔間煤層裂隙擴展貫通問題,基于對雙孔爆破應力波疊加效應的分析,建立雙孔聚能爆破數值分析模型,研究雙孔同時起爆時應力波的傳播特征、煤體的應力狀態、煤體裂隙擴展貫通規律以及應力波疊加效應對裂隙擴展的影響。結果表明,應力波疊加效應致使兩爆破孔中間截面上部分區域及其鄰域內形成均壓區,迫使部分徑向裂隙轉向,主導爆生裂隙空白帶的形成;兩爆破孔間的定向裂隙相互貫通后,爆生氣體相互作用促進貫通區裂隙的擴展并貫穿空白帶。同時,結合煤層深孔聚能爆破現場試驗發現,在兩爆破孔外側,應力波疊加效應促進裂隙的擴展,該作用隨著遠離爆破孔呈先增加后減小之勢;在兩爆破孔之間,應力波疊加效應抑制部分區域裂隙的擴展,致使兩爆破孔之間不同位置處煤層增透效果有起伏變化。

     

  • 圖  1  兩束應力波的正交(a)、斜交(b)干涉

    Figure  1.  Orthogonal (a) and oblique (b) interferences of the pressure waves

    圖  2  斜交干涉時系數k1k2的變化曲線

    Figure  2.  Oblique interference of the stress waves

    圖  3  煤層深孔聚能爆破數值分析模型

    Figure  3.  Numerical model of cumulative blasting with linear shaped charge in a coal seam

    圖  4  煤層深孔聚能爆破雙孔同時起爆時應力波的傳播與干涉過程。(a)t=1555 μs;(b)t=1710 μs;(c)t=1930 μs;(d)t=3250 μs

    Figure  4.  Stress wave propagation and interference process during the simultaneous detonation of two blastholes: (a) t=1555 μs; (b) t=1710 μs; (c) t=1930 μs; (d) t=3250 μs

    圖  5  煤層深孔聚能爆破模型中各個測點單元位置分布

    Figure  5.  Position distribution of each measuring point in the cumulative blasting model

    圖  6  煤層深孔聚能爆破雙孔齊爆時各個測點單元應力(爆炸壓力)變化曲線

    Figure  6.  Pressure curve of each measuring point during the simultaneous detonation of two blastholes

    圖  7  煤層深孔聚能爆破相鄰兩孔同時起爆后裂隙擴展貫通過程。(a)t=2500 μs;(b)t=2925 μs;(c)t=3085 μs;(d)t=6000 μs

    Figure  7.  Expansion and penetration process of coal seam fractures during the simultaneous detonation of two blastholes: (a) t = 2500 μs; (b) t = 2925 μs; (c) t = 3085 μs; (d) t = 6000 μs

    圖  8  煤層深孔普通爆破相鄰兩孔同時起爆后裂隙擴展特征[26]

    Figure  8.  Propagation characteristics of coal seam fractures under double deep-hole blasting[26]

    圖  9  煤層深孔聚能爆破相鄰兩孔同時起爆過程中應力波對兩爆破孔之間裂隙擴展的影響。(a)t=1955 μs;(b)t=2320 μs;(c)t=2965 μs;(d)t=3085 μs;(e)t=4355 μs;(f)t=5630 μs

    Figure  9.  Effect of the stress wave on crack propagation between two blastholes during the simultaneous detonation of two blastholes: (a) t=1955 μs;(b) t=2320 μs;(c) t=2965 μs;(d) t=3085 μs;(e) t=4355 μs;(f) t=5630 μs

    圖  10  煤層深孔聚能爆破相鄰兩孔同時起爆過程中應力波對兩爆破孔左側和右側的裂隙擴展影響。(a)t=3085 μs;(b)t=4355 μs;(c)t=5630 μs

    Figure  10.  Effect of the stress wave on crack propagation on the left and right side of two blastholes during the simultaneous detonation of two blastholes: (a) t=3085 μs; (b) t=4355 μs; (c) t=5630 μs

    圖  11  煤層深孔聚能爆破試驗鉆孔布置示意圖(單位:m)。(a)單孔爆破;(b)雙孔間隔5 m齊爆;(c)雙孔間隔9 m齊爆

    Figure  11.  Trial borehole layout of deep-hole cumulative blasting (unit: m): (a) single-hole blasting; (b) simultaneous explosion of two blastholes at 5-m intervals; (c) simultaneous explosion of two blastholes at 9-m intervals

    圖  12  煤層深孔聚能爆破前后各個考察孔內瓦斯體積分數及純流量變化規律。(a~b)單孔爆破;(c~d)雙孔爆破;(e~f)單/雙孔對比

    Figure  12.  Variations in gas volume fraction and gas pure flow in each test hole before and after cumulative blasting: (a?b) single-hole blasting; (c?d) double-hole blasting; (e?f) single-/double-hole blasting comparison

    圖  13  煤層深孔聚能爆破后各個考察孔內瓦斯體積分數(a)及純流量(b)對比圖

    Figure  13.  Comparison of gas volume fraction (a) and gas pure flow (b) in each test hole

    圖  14  煤層深孔聚能爆破后兩爆破孔之間各個考察孔內瓦斯體積分數(a)及純流量(b)對比圖

    Figure  14.  Comparison of gas volume fractions (a) and gas pure flow (b) in each observation hole between two blastholes

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Guo D Y, Zhao J C, Zhang C, et al. Mechanism of control hole on coal crack initiation and propagation under deep-hole cumulative blasting in coal seam. Chin J Rock Mech Eng, 2018, 37(4): 919

    郭德勇, 趙杰超, 張超, 等. 煤層深孔聚能爆破控制孔作用機制研究. 巖石力學與工程學報, 2018, 37(4):919
    [2] Chu H B, Ye H Y, Yang X L, et al. Experiments on propagation of blasting vibration based on damage accumulation. J Vib Shock, 2016, 35(2): 173

    褚懷保, 葉紅宇, 楊小林, 等. 基于損傷累積的爆破振動傳播規律試驗研究. 振動與沖擊, 2016, 35(2):173
    [3] Singh P K, Roy M P, Paswan R K. Controlled blasting for long term stability of pit-walls. Int J Rock Mech Min Sci, 2014, 70: 388 doi: 10.1016/j.ijrmms.2014.05.006
    [4] Lu W B, Li H B, Chen M, et al. Safety criteria of blasting vibration in hydropower engineering and several key problems in their application. Chin J Rock Mech Eng, 2009, 28(8): 1513 doi: 10.3321/j.issn:1000-6915.2009.08.001

    盧文波, 李海波, 陳明, 等. 水電工程爆破振動安全判據及應用中的幾個關鍵問題. 巖石力學與工程學報, 2009, 28(8):1513 doi: 10.3321/j.issn:1000-6915.2009.08.001
    [5] Li Q Y, Li X B, Fan Z P, et al. One time deep hole raise blasting technology and case study. Chin J Rock Mech Eng, 2013, 32(4): 664 doi: 10.3969/j.issn.1000-6915.2013.04.003

    李啟月, 李夕兵, 范作鵬, 等. 深孔爆破一次成井技術與應用實例分析. 巖石力學與工程學報, 2013, 32(4):664 doi: 10.3969/j.issn.1000-6915.2013.04.003
    [6] Liang B, Ding X C, Sun W J, et al. Numerical simulation of increasing permeability by double hole presplitting blasting in low permeability coal seam. Blasting, 2014, 31(2): 84 doi: 10.3963/j.issn.1001-487X.2014.02.018

    梁冰, 丁學丞, 孫維吉, 等. 低透氣性煤層雙孔預裂爆破增透數值模擬. 爆破, 2014, 31(2):84 doi: 10.3963/j.issn.1001-487X.2014.02.018
    [7] Miao Y S, Li X J, Yan H H, et al. Research and application of a symmetric bilinear initiation system in rock blasting. Int J Rock Mech Min Sci, 2018, 102: 52 doi: 10.1016/j.ijrmms.2018.01.017
    [8] Zhao J J, Zhang Y, Ranjith P G. Numerical simulation of blasting-induced fracture expansion in coal masses. Int J Rock Mech Min Sci, 2017, 100: 28 doi: 10.1016/j.ijrmms.2017.10.015
    [9] Hu S B, Wang E Y, Kong X G. Damage and deformation control equation for gas-bearing coal and its numerical calculation method. J Nat Gas Sci Eng, 2015, 25: 166 doi: 10.1016/j.jngse.2015.04.039
    [10] Ataei M, Kamali M. Prediction of blast-induced vibration by adaptive neuro-fuzzy inference system in Karoun 3 power plant and dam. J Vib Control, 2013, 19(12): 1906 doi: 10.1177/1077546312444769
    [11] Yue Z W, Yang L Y, Wang Y B. Experimental study of crack propagation in polymethyl methacrylate material with double holes under the directional controlled blasting. Fatigue Fract Eng Mater Struct, 2013, 36(8): 827 doi: 10.1111/ffe.12049
    [12] Ramulu M, Chakraborty A K, Sitharam T G. Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project – A case study. Tunnell Undergr Space Technol, 2009, 24(2): 208 doi: 10.1016/j.tust.2008.08.002
    [13] Yan C B. Analysis of cumulative damage effect of rock mass blasting based on acoustic frequency spectrum characters. Rock Soil Mech, 2017, 38(9): 2721

    閆長斌. 基于聲波頻譜特征的巖體爆破累積損傷效應分析. 巖土力學, 2017, 38(9):2721
    [14] Fei H L, Yuan J H. Study of slope stability based on blasting cumulative damage. Chin J Rock Mech Eng, 2016, 35(Suppl 2): 3868

    費鴻祿, 苑俊華. 基于爆破累積損傷的邊坡穩定性變化研究. 巖石力學與工程學報, 2016, 35(增刊2): 3868
    [15] Zhu Z H, Qu G J, Yang Y Q, et al. Dynamic photoelastic studies in the influence of delay ignition on the penetration of cracks between boreholes. Explos Shock Waves, 1991, 11(4): 346

    朱振海, 曲廣建, 楊永琦, 等. 起爆時差對孔間裂縫貫穿影響的動光彈研究. 爆炸與沖擊, 1991, 11(4):346
    [16] Yang R S, Wang Y B, Yang L Y, et al. Dynamic caustic experimental in two borehole study of crack propagation cut blasting. J China Univ Min Technol, 2012, 41(6): 868

    楊仁樹, 王雁冰, 楊立云, 等. 雙孔切槽爆破裂紋擴展的動焦散實驗. 中國礦業大學學報, 2012, 41(6):868
    [17] Li Q, Yu Q, Zhu G Y, et al. Experimental study of crack propagation under two-hole slotted cartridge blasting with different amounts of charge. Chin J Rock Mech Eng, 2017, 36(9): 2205

    李清, 于強, 朱各勇, 等. 不同藥量的切縫藥包雙孔爆破裂紋擴展規律試驗. 巖石力學與工程學報, 2017, 36(9):2205
    [18] Wei C H, Zhu W C, Bai Y, et al. Numerical simulation on two-hole blasting of rock under different joint angles and in-situ stress conditions. Chin J Theor Appl Mech, 2016, 48(4): 926 doi: 10.6052/0459-1879-15-259

    魏晨慧, 朱萬成, 白羽, 等. 不同節理角度和地應力條件下巖石雙孔爆破的數值模擬. 力學學報, 2016, 48(4):926 doi: 10.6052/0459-1879-15-259
    [19] Guo D Y, Zhao J C, Lü P F, et al. Effective fracture zone under deep-hole cumulative blasting in coal seam. Chin J Eng, 2019, 41(5): 582

    郭德勇, 趙杰超, 呂鵬飛, 等. 煤層深孔聚能爆破有效致裂范圍探討. 工程科學學報, 2019, 41(5):582
    [20] Zhao Y S, Feng Z C, Wan Z J. Least energy priciple of dynamical failure of rock mass. Chin J Rock Mech Eng, 2003, 22(11): 1781 doi: 10.3321/j.issn:1000-6915.2003.11.005

    趙陽升, 馮增朝, 萬志軍. 巖體動力破壞的最小能量原理. 巖石力學與工程學報, 2003, 22(11):1781 doi: 10.3321/j.issn:1000-6915.2003.11.005
    [21] Zhao Y S, Yang D, Hu Y Q, et al. Study on the effective technology way for mining methane in low permeability coal seam. J China Coal Soc, 2001, 26(5): 455 doi: 10.3321/j.issn:0253-9993.2001.05.002

    趙陽升, 楊棟, 胡耀青, 等. 低滲透煤儲層煤層氣開采有效技術途徑的研究. 煤炭學報, 2001, 26(5):455 doi: 10.3321/j.issn:0253-9993.2001.05.002
    [22] Hallquist J O. LS-DYNA Keyword User’s Manual. California: Livermore Software Technology Corporation, 2007
    [23] Guo D Y, Zhao J C, Lü P F, et al. Dynamic effects of deep-hole cumulative blasting in coal seam and its application. Chin J Eng, 2016, 38(12): 1681

    郭德勇, 趙杰超, 呂鵬飛, 等. 煤層深孔聚能爆破動力效應分析與應用. 工程科學學報, 2016, 38(12):1681
    [24] Liu J, Liu Z G, Gao K, et al. Experimental study and application of directional focused energy blasting in deep boreholes. Chin J Rock Mech Eng, 2014, 33(12): 2490

    劉健, 劉澤功, 高魁, 等. 深孔定向聚能爆破增透機制模擬試驗研究及現場應用. 巖石力學與工程學報, 2014, 33(12):2490
    [25] Mu C M, Wang H L, Huang W Y, et al. Increasing permeability mechanism using directional cumulative blasting in coal seams with high concentration of gas and low permeability. Rock Soil Mech, 2013, 34(9): 2496

    穆朝民, 王海露, 黃文堯, 等. 高瓦斯低透氣性煤體定向聚能爆破增透機制. 巖土力學, 2013, 34(9):2496
    [26] Zhao J J. Failure Mechanism of Hard Thick Coal under Various Types of Disturbance at the Front of Mining Face[Dissertation]. Beijing: China University of Mining & Technology (Beijing), 2018

    趙健健. 堅硬厚煤層分區域擾動破壞機理及弱化方法[學位論文]. 北京: 中國礦業大學(北京), 2018
  • 加載中
圖(14)
計量
  • 文章訪問數:  1551
  • HTML全文瀏覽量:  575
  • PDF下載量:  52
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-05-19
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回