-
摘要: 空中加油軟管系統作為空中加油過程最重要的組成部分,其建模和控制研究是一個重要研究方向,已經取得了很大進展。首先在概述了空中加油的主要類型的基礎上,分析了軟管式空中加油的特點;然后分別介紹了基于常微分方程和基于偏微分方程的兩種軟管系統的建模方法;進一步針對空中加油機加油全過程分析了加油軟管系統的對接控制、軟管的振動抑制和可控錐套的研究;最后從加油軟管系統的建模和控制方面展望了軟管式空中加油未來的發展趨勢。Abstract: Spurred by the rapid integration of unmanned aerial vehicles (UAVs) in modern military missions, significant research has been performed in the field of autonomous aerial refueling with a focus on the detection, control, and guidance of the tanker and receiver. The concept of aerial refueling has been highly valued in the military since it was first proposed in 1917. Through aerial refueling, an aircraft can significantly expand its combat range, extend its flight time, and improve its carrying capacity; thus, its combat effectiveness can be greatly improved. Furthermore, aerial refueling is gradually showing its merits in the civil domain; for example, it can be used to increase the travel distance of postal aircraft. There are two main types of aerial refueling: flying boom refueling (FBR) and probe-drogue refueling (PDR). Compared with FBR, PDR meets the requirements of UAVs such as high flexibility, high safety, and simplicity. Thus, PDR is more suitable than FBR for unmanned aerial systems. Unique advantages of PDR have allowed it to become the most extensively used refueling method, and the study of PDR has attracted increasing attention. However, the most important and complicated part in such studies is the modeling and control design of a refueling hose system. This paper described the results of a study conducted on the modeling and control design of PDR. First, this paper summarized the main types of aerial refueling and analyzed the characteristics of PDR. Subsequently, two types of modeling of PDR were introduced: lumped parameter system and distributed parameter system. Next, based on the modeling of the aerial refueling hose system, the control design of docking control, vibration control, and controllable drogue was analyzed for the entire process of aerial refueling. Finally, avenues for future research on the modeling and control design of PDR such as the accuracy of the model, complexity of the control system, and details of the working environment at various altitudes were discussed.
-
表 1 集中參數系統與分布參數系統
Table 1. LPS and DPS
System Equation Characteristic Independent variable LPS ODE Finite dimensional state space 1 LPS ODE Infinite dimensional state space ≥2 259luxu-164 -
參考文獻
[1] Maiersperger W. General design aspects of flight refueling. Aeron Eng Rev, 1954, 13(3): 52 [2] Liu Y Y. Research on Modeling and Control Technology of Aerial Refueling Boom[Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015劉洋洋. 空中加油機硬式授油系統建模與控制技術研究[學位論文]. 南京: 南京航空航天大學, 2015 [3] Lu Y P, Yang C X, Liu Y Y. A survey of modeling and control technologies for aerial refueling system. Acta Aeron Astron Sinica, 2014, 35(9): 2375陸宇平, 楊朝星, 劉洋洋. 空中加油系統的建模與控制技術綜述. 航空學報, 2014, 35(9):2375 [4] Guo Y G, Yue T, Wang L X. Modeling and simulation for boom aerial refueling device. Flight Dyn, 2017, 35(6): 20 doi: 10.3969/j.issn.1002-0853.2017.06.005郭有光, 樂挺, 王立新. 硬式空中加油裝置運動建模與仿真研究. 飛行力學, 2017, 35(6):20 doi: 10.3969/j.issn.1002-0853.2017.06.005 [5] Quan Q, Wei Z B, Gao J, et al. A survey on modeling and control problems for probe and drogue autonomous aerial refueling at docking stage. Acta Aeron Astron Sinica, 2014, 35(9): 2390全權, 魏子博, 高俊, 等. 軟管式自主空中加油對接階段中的建模與控制綜述. 航空學報, 2014, 35(9):2390 [6] Fezans N, Jann T. Towards automation of aerial refueling manoeuvres with the probe-and-drogue system: modelling and simulation. Transp Res Procedia, 2018, 29: 116 doi: 10.1016/j.trpro.2018.02.011 [7] Peng C. Research on Dynamic Characteristics of Aerial Refueling Hose in Deployment and Retrieval Process[Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018彭程. 空中加油軟管收放過程中動態特性研究[學位論文]. 南京: 南京航空航天大學, 2018 [8] Huang X, Lu J, Zhang H Y, et al. Wind tunnel test technique for aerodynamic stability of refueling hose-drogue of aerial tanker. Acta Aerodyn Sinica, 2019, 37(1): 140 doi: 10.7638/kqdlxxb-2018.0165黃霞, 盧靜, 張海酉, 等. 空中加油機加油軟管錐套氣動穩定性風洞試驗技術. 空氣動力學學報, 2019, 37(1):140 doi: 10.7638/kqdlxxb-2018.0165 [9] Zhang D, Chen Y, Fu X H. Tanker wake effects on the trailing UAV in autonomous aerial refueling. J Appl Fluid Mech, 2020, 13(2): 629 doi: 10.29252/jafm.13.02.29987 [10] Bhandari U, Thomas P R, Bullock S, et al. Bow wave effect in probe and drogue aerial refuelling//AIAA Guidance, Navigation and Control Conference. Boston, 2013: AIAA 2013-4695 [11] Su Z K, Wang H L. Antidisturbance vibration suppression of the aerial refueling hose during the coupling process. Int J Aerospace Eng, 2017, 2017: 9837349 [12] Ro K, Kuk T, Kamman J W. Dynamics and control of hose-drogue refueling systems during coupling. J Guid Control Dyn, 2011, 34(6): 1694 doi: 10.2514/1.53205 [13] Ro K, Kamman J W. Modeling and simulation of hose-paradrogue aerial refueling systems. J Guid Control Dyn, 2010, 33(1): 53 doi: 10.2514/1.45482 [14] Zhang L Y, Zhang H, Yang Y, et al. Dynamics modeling and simulation of docking process in aerial refueling. Acta Aeron Astron Sinica, 2012, 33(7): 1347張雷雨, 張洪, 楊洋, 等. 空中加油對接過程的動力學建模與仿真. 航空學報, 2012, 33(7):1347 [15] Hu M Q, Liu P, Nie X, et al. Influence of air turbulence on the movement of hose-drogue. Flight Dyn, 2010, 28(5): 20胡孟權, 柳平, 聶鑫, 等. 大氣紊流對空中加油軟管錐套運動的影響. 飛行力學, 2010, 28(5):20 [16] Hu M Q, Nie X, Wang L M. Determination of hose static catenary shape in “probe-drogue” in-flight refueling system. J Air Force Eng Univ Nat Sci, 2009, 10(5): 22胡孟權, 聶鑫, 王麗明. “插頭-錐管”式空中加油軟管平衡拖曳位置計算. 空軍工程大學學報(自然科學版), 2009, 10(5):22 [17] Wang W, Liu X C, Wang P, et al. Dynamic modeling and simulation of aerial refueling hose-drogue. Electron Des Eng, 2012, 20(17): 135 doi: 10.3969/j.issn.1674-6236.2012.17.049王偉, 劉喜藏, 王鵬, 等. 空中加油軟管—錐套動態建模與仿真. 電子設計工程, 2012, 20(17):135 doi: 10.3969/j.issn.1674-6236.2012.17.049 [18] Cong J P, Cui L J, Chen H R, et al. Research on safety analysis and simulation validation of HWP in air refueling. J Beijing Univ Aeron Astron, https://doi.org/10.13700/j.bh.1001-5965.2019.0607叢繼平, 崔利杰, 陳浩然, 等. 空中加油“甩鞭”現象安全性分析與仿真驗證研究. 北京航空航天大學學報, https://doi.org/10.13700/j.bh.1001-5965.2019.0607 [19] Wang W, Liu X C, Wang P. Dynamics of hose-drogue refueling systems during coupling. Flight Dyn, 2013, 31(2): 180王偉, 劉喜藏, 王鵬. 空中加油對接過程軟管—錐套動態特性. 飛行力學, 2013, 31(2):180 [20] Wang H T, Dong X M, Guo J, et al. Dynamics modeling and analysis of hose whipping phenomenon of aerial refueling hose-drogue assembly. Acta Aeron Astron Sinica, 2015, 36(9): 3116王海濤, 董新民, 郭軍, 等. 空中加油軟管錐套組合體甩鞭現象動力學建模與分析. 航空學報, 2015, 36(9):3116 [21] Meirovitch L, Baruh H. On the problem of observation spillover in self-adjoint distributed-parameter systems. J Optim Theory Appl, 1983, 39(2): 269 doi: 10.1007/BF00934533 [22] He W, He X Y, Ge S S. Boundary output feedback control of a flexible string system with input saturation. Nonlinear Dyn, 2015, 80(1-2): 871 doi: 10.1007/s11071-015-1913-8 [23] He X Y, He W, Sun C Y. Robust adaptive vibration control for an uncertain flexible Timoshenko robotic manipulator with input and output constraints. Int J Syst Sci, 2017, 48(13): 2860 doi: 10.1080/00207721.2017.1360963 [24] Hong K S. Asymptotic behavior analysis of a coupled time-varying system: application to adaptive systems. IEEE Trans Autom Control, 1997, 42(12): 1693 doi: 10.1109/9.650018 [25] Vakil M, Fotouhi R, Nikiforuk P N. End-effector trajectory tracking of a flexible link manipulator using integral manifold concept. Int J Syst Sci, 2011, 42(12): 2057 doi: 10.1080/00207721003710631 [26] He W, Ge S S. Cooperative control of a nonuniform gantry crane with constrained tension. Automatica, 2016, 66: 146 doi: 10.1016/j.automatica.2015.12.026 [27] He W, Ge S S. Vibration control of a flexible beam with output constraint. IEEE Trans Ind Electron, 2015, 62(8): 5023 doi: 10.1109/TIE.2015.2400427 [28] Liu Z J, Liu J K, He W. Dynamic modeling and vibration control of a flexible aerial refueling hose. Aerospace Sci Technol, 2016, 55: 92 doi: 10.1016/j.ast.2016.05.017 [29] Liu Z J, Liu J K, He W. Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint. Automatica, 2017, 77: 302 doi: 10.1016/j.automatica.2016.11.002 [30] Valasek J, Gunnam K, Kimmett J, et al. Vision-based sensor and navigation system for autonomous air refueling. J Guid Control Dyn, 2005, 28(5): 979 doi: 10.2514/1.11934 [31] Tandale M D, Bowers R, Valasek J. Trajectory tracking controller for vision-based probe and drogue autonomous aerial refueling. J Guid Control Dyn, 2006, 29(4): 846 doi: 10.2514/1.19694 [32] Wang J, Patel V V, Cao C Y, et al. Novel L1 adaptive control methodology for aerial refueling with guaranteed transient performance. J Guid Control Dyn, 2008, 31(1): 182 doi: 10.2514/1.31199 [33] Su Z K, Wang H L, Shao X L, et al. Autonomous aerial refueling precise docking based on active disturbance rejection control//IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. Yokohama, 2015: 4574 [34] Su Z K, Wang H L, Li N. Anti-disturbance rapid vibration suppression of the flexible aerial refueling hose. Mech Syst Signal Process, 2018, 104: 87 doi: 10.1016/j.ymssp.2017.10.034 [35] Su Z K, Wang H L. Probe motion compound control for autonomous aerial refueling docking. Aerospace Sci Technol, 2018, 72: 1 doi: 10.1016/j.ast.2017.10.033 [36] Yu Z Q, Zhang Y M, Qu Y H. Fault-tolerant control for autonomous aerial refueling against actuator fault in receiver UAV. IFAC PapersOnLine, 2018, 51(24): 274 doi: 10.1016/j.ifacol.2018.09.588 [37] Ren J R, Dai X H, Quan Q, et al. Reliable docking control scheme for probe-drogue refueling. J Guid Control Dyn, 2019, 42(11): 2511 doi: 10.2514/1.G003708 [38] Philip N K, Ananthasayanam M R. Relative position and attitude estimation and control schemes for the final phase of an autonomous docking mission of spacecraft. Acta Astron, 2003, 52(7): 511 doi: 10.1016/S0094-5765(02)00125-X [39] Sinopoli B, Micheli M, Donato G, et al. Vision based navigation for an unmanned aerial vehicle//Proceedings of the 2001 IEEE International Conference on Robotics and Automation. Seoul, 2001: 1757 [40] Fravolini M L, Ficola A, Napolitano M R, et al. Development of modelling and control tools for aerial refueling for UAVs//AIAA Guidance, Navigation, and Control Conference and Exhibit. Austin, 2003: AIAA 2003-5798 [41] Fravolini M L, Ficola A, Campa G, et al. Modeling and control issues for autonomous aerial refueling for UAVs using a probe-drogue refueling system. Aerospace Sci Technol, 2004, 8(7): 611 doi: 10.1016/j.ast.2004.06.006 [42] Wang L X, Yin H P, Guo Y G, et al. Closed-loop motion characteristic requirements of receiver aircraft for probe and drogue aerial refueling. Aerospace Sci Technol, 2019, 93: 105293 doi: 10.1016/j.ast.2019.07.026 [43] Thomas P R, Bullock S, Richardson T S, et al. Collaborative control in a flying-boom aerial refueling simulation. J Guid Control Dyn, 2015, 38(7): 1274 doi: 10.2514/1.G000486 [44] Su Z K, Wang H L, Shao X L, et al. A robust back-stepping based trajectory tracking controller for the tanker with strict posture constraints under unknown flow perturbations. Aerospace Sci Technol, 2016, 56: 34 doi: 10.1016/j.ast.2016.07.001 [45] Vassberg J, Yeh D, Blair A, et al. Numerical simulations of KC-10 wing-mount aerial refueling hose-drogue dynamics with a reel take-up system//21st Applied Aerodynamics Conference. Orlando, 2003: 23 [46] Alden R E, Vennero G G. Aerial Refueling System: US Patent, 5141178. 1992-8-25 [47] Wang H T, Dong X M, Xue J P, et al. Dynamic modeling of a hose-drogue aerial refueling system and integral sliding mode backstepping control for the hose whipping phenomenon. Chin J Aeron, 2014, 27(4): 930 doi: 10.1016/j.cja.2014.06.010 [48] Su Z K, Xie M Y, Li C T. RISE based active vibration control for the flexible refueling hose. Aerospace Sci Technol, 2019, 92: 387 doi: 10.1016/j.ast.2019.06.014 [49] Liu Z J, Liu J K, He W. Adaptive boundary control of a flexible manipulator with input saturation. Int J Control, 2016, 89(6): 1191 doi: 10.1080/00207179.2015.1125022 [50] Nguyen T L, Do K D, Pan J. Boundary control of two-dimensional marine risers with bending couplings. J Sound Vib, 2013, 332(16): 3605 doi: 10.1016/j.jsv.2013.02.026 [51] He W, Zhang S, Ge S S. Robust adaptive control of a thruster assisted position mooring system. Automatica, 2014, 50(7): 1843 doi: 10.1016/j.automatica.2014.04.023 [52] Kang W, Fridman E. Distributed stabilization of Korteweg de Vries Burgers equation in the presence of input delay. Automatica, 2019, 100: 260 doi: 10.1016/j.automatica.2018.11.025 [53] Orlov Y, Pisano A, Usai E. Exponential stabilization of the uncertain wave equation via distributed dynamic input extension. IEEE Trans Autom Control, 2011, 56(1): 212 doi: 10.1109/TAC.2010.2089380 [54] Conrad F. Stabilization of beams by pointwise feedback control. SIAM J Control Optim, 1990, 28(2): 423 doi: 10.1137/0328023 [55] Ammari K, Tucsnak M. Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force. SIAM J Control Optim, 2000, 39(4): 1160 doi: 10.1137/S0363012998349315 [56] Xu G Q, Wang H X. Stabilisation of Timoshenko beam system with delay in the boundary control. Int J Control, 2013, 86(6): 1165 doi: 10.1080/00207179.2013.787494 [57] Liu Z J, Liu J K, He W. Deadzone compensation based boundary control of a flexible aerial refueling hose with output constraint. IFAC PapersOnline, 2017, 50(1): 645 doi: 10.1016/j.ifacol.2017.08.113 [58] Chang L, Jia Y M. Adaptive control of a hose and drogue system with input nonlinearities and partial state constraints. Int J Control Autom Syst, 2019, 17(10): 2508 doi: 10.1007/s12555-019-0070-0 [59] Ro K, Kuk T, Kamman J W. Active control of aerial refueling hose-drogue systems//AIAA Guidance, Navigation, and Control Conference. Toronto, 2010: AIAA 2010-8400 [60] Ro K, Basaran E. Aerodynamic investigations of Paradrogue assembly in aerial refueling system//44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, 2006: AIAA 2006-855 [61] Michael S F. Controllable Drogue: US Patent, 8186623 B2. 2012-05 [62] Williamson W R, Reed E, Glenn G J, et al. Controllable drogue for automated aerial refueling. J Aircraft, 2010, 47(2): 515 doi: 10.2514/1.44758 [63] Kirkland W L, Reed E. Stabilized Controllable Drogue for Aerial Flight Refueling: US Patent, 2011/0226905 A1. 2011-09 [64] Thomas P R, Bhandari U, Bullock S, et al. Advances in air to air refuelling. Prog Aerospace Sci, 2014, 71: 14 doi: 10.1016/j.paerosci.2014.07.001 [65] Krispin Y, Velger M. Controllable Hose-and-Drogue In-Flight Refueling System: European Patent, EP1094001. 2003-09-04 [66] Feldmann M S. Controllable Drogue: US Patent, 20100001124. 2010-07-01 [67] Saggio F, Ribbens W B, Ooi K K. Stabilization of A Drogue Body: US Patent, 20050045768. 2005-03-03 [68] Basom R R. Breakaway: A Look at the Integration of Aerial Refueling and Unmanned Aircraft Systems in Future Operations[Dissertation]. Kansas: US Army Command and General Staff College, 2007 [69] Gu R, Sun Y T, Song X C, et al. Analysis of display and control of aerial tanker. Telecom World, 2019(7): 57 doi: 10.3969/j.issn.1006-4222.2019.07.035谷瑞, 孫永濤, 宋昕宸, 等. 空中加油機顯示與控制淺析. 通訊世界, 2019(7):57 doi: 10.3969/j.issn.1006-4222.2019.07.035 [70] Meng Y, Gan X, Bai G X. Path following control of underground mining articulated vehicle based on the preview control method. Chin J Eng, 2019, 41(5): 662孟宇, 甘鑫, 白國星. 基于預瞄距離的地下礦用鉸接車路徑跟蹤預測控制. 工程科學學報, 2019, 41(5):662 [71] Zheng W H, Jia Y M. Adaptive tracking control for omnidirectional mobile robots with full-state constraints and input saturation. Chin J Eng, 2019, 41(9): 1176鄭文昊, 賈英民. 具有狀態約束與輸入飽和的全向移動機器人自適應跟蹤控制. 工程科學學報, 2019, 41(9):1176 -