<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

煉鋼–連鑄區段3種典型工序界面技術研究進展

楊建平 張江山 劉青

楊建平, 張江山, 劉青. 煉鋼–連鑄區段3種典型工序界面技術研究進展[J]. 工程科學學報, 2020, 42(12): 1542-1556. doi: 10.13374/j.issn2095-9389.2020.05.08.001
引用本文: 楊建平, 張江山, 劉青. 煉鋼–連鑄區段3種典型工序界面技術研究進展[J]. 工程科學學報, 2020, 42(12): 1542-1556. doi: 10.13374/j.issn2095-9389.2020.05.08.001
YANG Jian-ping, ZHANG Jiang-shan, LIU Qing. Research progress on three kinds of classic process interface technologies in steelmaking-continuous casting section[J]. Chinese Journal of Engineering, 2020, 42(12): 1542-1556. doi: 10.13374/j.issn2095-9389.2020.05.08.001
Citation: YANG Jian-ping, ZHANG Jiang-shan, LIU Qing. Research progress on three kinds of classic process interface technologies in steelmaking-continuous casting section[J]. Chinese Journal of Engineering, 2020, 42(12): 1542-1556. doi: 10.13374/j.issn2095-9389.2020.05.08.001

煉鋼–連鑄區段3種典型工序界面技術研究進展

doi: 10.13374/j.issn2095-9389.2020.05.08.001
基金項目: 國家自然科學基金資助項目(50874014);中央高校基本科研業務費資助項目(FRF-BR-17-029A)
詳細信息
    通訊作者:

    E-mail: qliu@ustb.edu.cn

  • 中圖分類號: TF758

Research progress on three kinds of classic process interface technologies in steelmaking-continuous casting section

More Information
  • 摘要: 面對鋼廠智能化發展的時代要求,煉鋼–連鑄區段工序界面技術受到越來越多冶金學者的關注,其不僅是解決工序關系集合協同–優化問題的重要手段,也影響著工序功能集合解析–優化和流程工序集合重構–優化的效果。本文對煉鋼–連鑄區段3種典型工序界面技術,即鋼包運行控制、天車運行控制和生產運行模式優化的研究進展進行闡述,其中,鋼包運行控制包括鋼包熱狀態監測、鋼包選配以及鋼包調度,天車運行控制包括吊運任務的分配和同跨/異跨天車的協同調度,生產運行模式優化包括工序/設備產能、時間節奏與爐–機對應模式的匹配設計。此外,針對煉鋼–連鑄區段多工序協同運行的制約因素,指出工序界面技術協同的必要性,并對上述工序界面技術的協同機制與協同方案進行了闡述。

     

  • 圖  1  煉鋼?連鑄區段鋼包運行示意圖

    Figure  1.  Schematic of ladle cycling in SCCS

    圖  2  鋼包包殼溫度與熱流量分布圖[18]。(a)溫度分布;(b)熱流量分布

    Figure  2.  Distributions of temperature and heat ?ux on ladle shell[18]: (a) temperature distribution; (b) heat flux distribution

    圖  3  鋼包調度示意圖

    Figure  3.  Schematic of ladle scheduling

    圖  4  鋼包運行管控系統技術架構圖

    Figure  4.  Technical framework of the control system for ladles cycling

    圖  5  國內某鋼廠車間布置和天車配置

    Figure  5.  Workshop layout and crane configuration in steelmaking plant

    圖  6  生產模式在鋼廠系統中的地位及其邏輯關系[70]

    Figure  6.  Status of operation mode in steelmaking plant system[70]

    圖  7  “層流”運行模式

    Figure  7.  “Laminar flow” operation mode

    圖  8  模型應用前后爐–機對應關系[75]。(a)應用前;(b)應用后

    Figure  8.  Furnace?caster coordinating scenario[75]: (a) before application; (b) after application

    圖  9  鋼包、天車運行控制與生產運行模式優化的協同機制

    Figure  9.  Collaboration mechanism among ladle cycling control, crane running control, and operation mode optimization

    表  1  鋼包熱狀態影響因素的研究

    Table  1.   Study on influence factors on thermal state of ladles

    No.Authors (Year)Influencing factorsMethods (tools)/Model typesRefs.
    1Xia (2001)Initial temperature of ladle lining, heat dissipation rate of slag layer, and bottom blowing or notCFX software/Two dimensional
    heat transfer model
    [22-23]
    2Volkova (2003)Lining thickness and working layer materialsTwo dimensional heat transfer model[24]
    3Bj?rn (2011)Lining thickness, distance from cover to ladle edge,
    and preheating time
    COMSOL software/Two dimensional
    heat transfer model
    [25]
    4Tripathi (2012)Thickness of slag layer, tapping temperature, ladle life,
    and initial temperature of ladle lining
    Software of Gambit and Fluent/Two
    dimensional heat transfer model
    [26]
    5Huang (2016)Repair time, preheating time, baking gas temperature,
    and cooling time
    Two dimensional heat transfer model[27]
    6Phanomchoeng (2016)Thermal resistance for different materials and thermal resistance for the same material with different temperaturesBounded Jacobian nonlinear observer/One dimensional heat transfer model[28]
    7Gong (2016)Online/offline preheating time, cooling time, and erosion degree of ladle liningAnsys software with ParaMesh/Two
    dimensional heat transfer model
    [29]
    8Wang (2017)Materials and structures of ladle liningFluent software/Three dimensional
    heat transfer model
    [30]
    9Yuan (2018)Ladle preheating methodsFluent software/Three dimensional
    heat transfer model
    [31]
    10Santos (2018)Working layer materials and insulation layer or notAbaqus software/Two dimensional
    heat transfer model
    [32]
    11Hou (2018)Thickness and thermal conductivity of ladle liningAbaqus software and Taguchi approaches/Two dimensional heat transfer model[33]
    下載: 導出CSV

    表  2  近年來關于天車調度的代表性研究工作

    Table  2.   Study on crane scheduling in recent years

    No.Authors (Year)Modeling methodsSolving methodsCharacteristicsRefs.
    1Xu (2007)Cellular automataHeuristic and genetic algorithmsVerify the feasibility of results through
    cellular automata
    [55]
    2Ma (2010)Multi-agentHeuristic algorithmImprove the reliability of results by frequent interaction among different agents and
    parallel computing strategy
    [56]
    3Liu (2011)Mathematical programmingHeuristic algorithmCoordinated scheduling between
    ladles and cranes
    [57]
    4Sun (2011)Mixed-timed Petri NetBranch-and-cutmethodTransform crane scheduling problem
    into the linear model
    [58]
    5Xie (2012)Mathematical programmingVariable neighborhood search algorithmOptimize algorithm parameters by
    artificial neural network
    [59]
    6Yu (2012)Mathematical programmingGenetic and heuristic algorithmsSolve the static and dynamic crane scheduling models respectively by genetic
    and heuristic algorithms
    [60]
    7Zhu (2013)Petri Net with UMLHeuristic algorithmMake up the deficiency of UML on formal expression by Petri Net[61]
    8Zheng (2013)Mathematical programmingImmune genetic algorithmProminent local search ability of the algorithm and strong global diversity of solutions[62]
    9Wang (2014)Mathematical programmingImproved Memetic algorithmDesign decoding operator based on task allocation and conflicts eliminating rules[63]
    10Jiang (2016)Mathematical programmingImproved genetic algorithmDesign encoding operator based on matrix form, and solve task priority and crane
    selection in parallel
    [64]
    11Gao (2017)Mathematical programmingImproved genetic algorithmMinimize the total transfer times of tasks and balance the task allocations among cranes[65]
    12Li (2019)Mathematical programmingHeuristic algorithmApply the predictive reactive
    rescheduling strategy
    [66]
    13Pang (2019)Mathematical programmingHeuristic algorithmApply analytical hierarchy process (AHP) fuzzy comprehensive evaluation to
    analyze crane scheduling
    [67]
    14Yang (2019)Plant simulationHeuristic algorithmCoordinated scheduling among ladles,
    cranes, and heat plans
    [68]
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Zhong R Y, Xu X, Klotz E, et al. Intelligent manufacturing in the context of Industry 4.0: a review. Engineering, 2017, 3(5): 616 doi: 10.1016/J.ENG.2017.05.015
    [2] Yin R Y. A discussion on “smart” steel plant—view from physical system side. Iron Steel, 2017, 52(6): 1

    殷瑞鈺. 關于智能化鋼廠的討論—從物理系統一側出發討論鋼廠智能化. 鋼鐵, 2017, 52(6):1
    [3] Yin R Y. Metallurgical Process Engineering. 2nd Ed. Beijing: Metallurgical Industry Press, 2011

    殷瑞鈺. 冶金流程工程學. 2版. 北京: 冶金工業出版社, 2011
    [4] Liu Q, Tian N Y, Yin R Y. Running control for steelmaking workshop. Iron Steel, 2003, 38(9): 14 doi: 10.3321/j.issn:0449-749X.2003.09.004

    劉青, 田乃媛, 殷瑞鈺. 煉鋼廠的運行控制. 鋼鐵, 2003, 38(9):14 doi: 10.3321/j.issn:0449-749X.2003.09.004
    [5] Semura K, Matsuura H. Past development and future prospects of secondary refining technology. Tetsu-to-Hagane, 2014, 100(4): 456 doi: 10.2355/tetsutohagane.100.456
    [6] Wang F, Tian N Y, He D F, et al. Discussion on effective utilization coefficient of online two-operating position LF. Steelmaking, 2011, 27(1): 71

    王鋒, 田乃媛, 賀東風, 等. 在線雙工位LF有效利用系數的討論. 煉鋼, 2011, 27(1):71
    [7] Wang G, Wang B, Wang B, et al. Scheduling model for steelmaking-continuous casting process based on “furnace-caster matching” principle. J Univ Sci Technol Beijing, 2013, 35(8): 1080

    王剛, 王彬, 王寶, 等. 基于“爐機對應”原則的煉鋼–連鑄調度模型. 北京科技大學學報, 2013, 35(8):1080
    [8] Yu X Z, Yang J P, Li X, et al. Optimized scheme of sequence casting based on "furnace-caster matching" principle. China Metall, 2019, 29(4): 22

    余相灼, 楊建平, 李想, 等. 基于“爐機對應”原則的連澆優化方案. 中國冶金, 2019, 29(4):22
    [9] Feng K, He D F, Xu A J, et al. End temperature prediction of molten steel in LF based on CBR-BBN. Steel Res Int, 2016, 87(1): 79 doi: 10.1002/srin.201400512
    [10] Bao Y P, Li X, Wang M. A novel method for endpoint temperature prediction in RH. Ironmaking Steelmaking, 2019, 46(4): 343 doi: 10.1080/03019233.2017.1392104
    [11] Fu G Q, Liu Q, Wang Z, et al. Grey box model for predicting the LF end-point temperature of molten steel. J Univ Sci Technol Beijing, 2013, 35(7): 948

    付國慶, 劉青, 汪宙, 等. LF精煉終點鋼水溫度灰箱預報模型. 北京科技大學學報, 2013, 35(7):948
    [12] Fredman T P. Heat transfer in steelmaking ladle refractories and steel temperature: a literature review. Scand J Metall, 2000, 29(6): 232 doi: 10.1034/j.1600-0692.2000.d01-28.x
    [13] Wu X D, Zhou D, Zheng J Z. Research on thermal status of 300 t ladle in the process of steel-making and continues casting. Steelmaking, 2009, 25(4): 49

    吳曉東, 周丹, 鄭建忠. 煉鋼–連鑄過程300 t鋼包熱狀態測試研究. 煉鋼, 2009, 25(4):49
    [14] Mazzetti-Succi V. Insulation board investigation and trials in 300 tonne steel ladles at Arcelormittal Dofasco // Proceedings of the Unified International Technical Conference on Refractories. Victoria, 2014: 703
    [15] Zhou J A, Xie J B, Wang B, et al. New insight into investigation of thermal transfer of molten steel inside a ladle with vacuum shell. J Therm Anal Calorim, 2017, 128(1): 481 doi: 10.1007/s10973-016-5853-4
    [16] Fredman T P, Saxen H. Model for temperature profile estimation in the refractory of a metallurgical ladle. Metall Mater Trans B, 1998, 29(3): 651 doi: 10.1007/s11663-998-0100-4
    [17] Zabadal J R S, Vilhena M T M B, Leite S Q B. Heat transfer process simulation by finite differences for online control of ladle furnaces. Ironmaking Steelmaking, 2004, 31(3): 227 doi: 10.1179/030192304225012150
    [18] Lu B Y, Meng X N, Zhu M Y. Numerical analysis for the heat transfer behavior of steel ladle as the thermoelectric waste-heat source. Catal Today, 2018, 318: 180 doi: 10.1016/j.cattod.2017.10.038
    [19] Song G W, Tama B A, Park J, et al. Temperature control optimization in a steel-making continuous casting process using a multimodal deep learning approach. Steel Res Int, 2019, 90(12): 1900321 doi: 10.1002/srin.201900321
    [20] Zhang Z, Cao L L, Lin W H, et al. Improved prediction model for BOF end-point manganese content based on IPSO-RELM method. Chin J Eng, 2019, 41(8): 1052

    張壯, 曹玲玲, 林文輝, 等. 基于IPSO-RELM轉爐冶煉終點錳含量預測模型. 工程科學學報, 2019, 41(8):1052
    [21] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436 doi: 10.1038/nature14539
    [22] Xia J L, Ahokainen T. Transient flow and heat transfer in a steelmaking ladle during the holding period. Metall Mater Trans B, 2001, 32(4): 733 doi: 10.1007/s11663-001-0127-2
    [23] Xia J L, Ahokainen T. Thermal stratification in a steel ladle. Can Metall Q, 2001, 40(4): 479 doi: 10.1179/cmq.2001.40.4.479
    [24] Volkova O, Janke D. Modelling of temperature distribution in refractory ladle lining for steelmaking. ISIJ Int, 2003, 43(8): 1185 doi: 10.2355/isijinternational.43.1185
    [25] Bj?rn G, M?rten G, Du S C. Thermal modelling of the ladle preheating process. Steel Res Int, 2011, 82(12): 1425 doi: 10.1002/srin.201100198
    [26] Tripathi A, Saha J K, Singh J B, et al. Numerical simulation of heat transfer phenomenon in steel making ladle. ISIJ Int, 2012, 52(9): 1591 doi: 10.2355/isijinternational.52.1591
    [27] Huang Y F, Xiong W, Fan Z Y. Effect of ladle thermal state on the LF endpoint temperature of molten steel // Proceedings of the 2015 4th International Conference on Sustainable Energy and Environmental Engineering. Shenzhen, 2016: 533
    [28] Phanomchoeng G, Chantranuwathana S, Charunyakorn P. On-line ladle lining temperature estimation by using bounded Jacobian nonlinear observer. J Iron Steel Res Int, 2016, 23(8): 792 doi: 10.1016/S1006-706X(16)30122-4
    [29] Gong H C, Xu A J, Yuan F, et al. The analysis about effect of ladle thermal status on liquid steel temperature drop and algorithm optimization. Steelmaking, 2016, 32(6): 19

    龔華超, 徐安軍, 袁飛, 等. 鋼包熱狀態對鋼水溫降影響因素分析算法優化. 煉鋼, 2016, 32(6):19
    [30] Wang M. Study on Improvement of Thermal Properties of Ladle with New Refractory Materials[Dissertation]. Shenyang: Northeastern University, 2017

    王淼. 新型耐火材料改善鋼包熱特性的研究[學位論文]. 沈陽: 東北大學, 2017
    [31] Yuan F. Temperature Simulation and Optimization Research on the Processes of the Ladle Regenerative Preheating and Turnover[Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    袁飛. 鋼包蓄熱式烘烤及周轉過程溫度模擬和優化研究[學位論文]. 北京: 北京科技大學, 2018
    [32] Santos M F, Moreira M H, Campos M G G, et al. Enhanced numerical tool to evaluate steel ladle thermal losses. Ceram Int, 2018, 44(11): 12831 doi: 10.1016/j.ceramint.2018.04.092
    [33] Hou A D, Jin S L, Harmuth H, et al. A method for steel ladle lining optimization applying thermomechanical modeling and Taguchi approaches. JOM, 2018, 70(11): 2449 doi: 10.1007/s11837-018-3063-1
    [34] Wang E H, Chen J H, Hou X M. Current research and latest developments on refractories used as ladle linings. Chin J Eng, 2019, 41(6): 695

    王恩會, 陳俊紅, 侯新梅. 鋼包工作襯用耐火材料的研究現狀及最新進展. 工程科學學報, 2019, 41(6):695
    [35] Yan W, Wu G Y, Ma S B, et al. Energy efficient lightweight periclase-magnesium alumina spinel castables containing porous aggregates for the working lining of steel ladles. J Eur Ceram Soc, 2018, 38(12): 4276 doi: 10.1016/j.jeurceramsoc.2018.05.002
    [36] Gruber D, Harmuth H. Thermomechanical behavior of steel ladle linings and the influence of insulations. Steel Res Int, 2014, 85(4): 512 doi: 10.1002/srin.201300129
    [37] Liu Q, Zhao P, Wu X D, et al. Control strategy for ladle running. J Univ Sci Technol Beijing, 2005, 27(2): 235 doi: 10.3321/j.issn:1001-053X.2005.02.025

    劉青, 趙平, 吳曉東, 等. 鋼包的運行控制. 北京科技大學學報, 2005, 27(2):235 doi: 10.3321/j.issn:1001-053X.2005.02.025
    [38] Wang B, Wang B, Mu Y Q, et al. Optimization and control of ladle operation for special steel plants. Appl Mech Mater, 2014, 602-605: 899 doi: 10.4028/www.scientific.net/AMM.602-605.899
    [39] Huang B F, Tian N Y, Shi Z, et al. Steel ladle exchange models during steelmaking and continuous casting process. J Iron Steel Res Int, 2017, 24(6): 617 doi: 10.1016/S1006-706X(17)30093-6
    [40] Cai J, Wang H B, He D F, et al. Affecting factors of the turnover rate of steel ladle in steelmaking plants. J Univ Sci Technol Beijing, 2013, 35(8): 1072

    蔡峻, 汪紅兵, 賀東風, 等. 煉鋼廠鋼包周轉率的影響因素. 北京科技大學學報, 2013, 35(8):1072
    [41] Cai J, Wang H B, Xu A J, et al. Simulation on influencing factors of rate of hot steel ladle in steelmaking plant. J Iron Steel Res, 2014, 26(1): 27

    蔡峻, 汪紅兵, 徐安軍, 等. 煉鋼廠鋼包紅包出鋼率的影響因素仿真. 鋼鐵研究學報, 2014, 26(1):27
    [42] Zhao T H, Xu A J, Cai J. Survey on steel ladle management system. Ind Heat, 2015, 44(2): 12 doi: 10.3969/j.issn.1002-1639.2015.02.004

    趙天恒, 徐安軍, 蔡峻. 煉鋼廠鋼包管理系統研究綜述. 工業加熱, 2015, 44(2):12 doi: 10.3969/j.issn.1002-1639.2015.02.004
    [43] Liu J. Research on Ladle Tracking and Scheduling in Steelworks[Dissertation]. Hangzhou: Hangzhou Dianzi University, 2009

    劉建. 煉鋼廠鋼包跟蹤與調度研究[學位論文]. 杭州: 杭州電子科技大學, 2009
    [44] Liu W, Chai T Y. Steelmaking continuous casting ladle matching method based on rule-learning. J Northeast Univ Nat Sci, 2018, 39(11): 1521

    劉煒, 柴天佑. 基于規則學習的煉鋼–連鑄鋼包選配方法. 東北大學學報: 自然科學版, 2018, 39(11):1521
    [45] Liu W, Pang X F, Chai T Y. Research on the dephosphorization ladle scheduling algorithm of steelmaking?refining?continuous casting process. Control Eng China, 2019, 26(4): 790

    劉煒, 龐新福, 柴天佑. 煉鋼–精煉–連鑄脫磷鋼包調度算法研究. 控制工程, 2019, 26(4):790
    [46] Tan Y Y, Wei Z, Wang S, et al. Optimization algorithm for ladle scheduling based on the VRPTW-AT model. J Syst Eng, 2013, 28(1): 94 doi: 10.3969/j.issn.1000-5781.2013.01.013

    譚園園, 魏震, 王森, 等. 基于VRPTW-AT模型的鋼包優化調度方法. 系統工程學報, 2013, 28(1):94 doi: 10.3969/j.issn.1000-5781.2013.01.013
    [47] Tan Y Y, Cheng T C E, Ji M. A multi-objective scatter search for the ladle scheduling problem. Int J Prod Res, 2014, 52(24): 7513 doi: 10.1080/00207543.2014.939238
    [48] Xiao Y. Research on Ladle Scheduling Based on UML and Plant Simulation in Steel Plant[Dissertation]. Chongqing: Chongqing University, 2012

    肖陽. 基于UML與Plant Simulation的鋼包周轉調度研究[學位論文]. 重慶: 重慶大學, 2012
    [49] Zhang T. Study on Optimical Method of Steelmaking-Continuous Casting Production Planning Involved in Ladle Turn-around[Dissertation]. Chongqing: Chongqing University, 2009

    張濤. 涉及鋼包周轉的煉鋼–連鑄生產作業計劃優化方法研究[學位論文]. 重慶: 重慶大學, 2009
    [50] Zhang Y. A Scatter Search Algorithm for A Steelmaking?Continuous Casting Schedule Problem with Combination of Ladle Allocation[Dissertation]. Shenyang: Shenyang University of Technology, 2018

    張媛. 考慮鋼包分配的煉鋼?連鑄調度問題研究[學位論文]. 沈陽: 沈陽工業大學, 2018
    [51] Cai J, Wang H B, Xu A J, et al. Molten steel temperature on-line compensation system based on steel ladle tracking. Metall Ind Autom, 2013, 37(5): 37

    蔡峻, 汪紅兵, 徐安軍, 等. 基于鋼包跟蹤的鋼水溫度在線補償系統. 冶金自動化, 2013, 37(5):37
    [52] Kuyama S, Tomiyama S. A crane guidance system with scheduling optimization technology in a steel slab yard. ISIJ Int, 2016, 56(5): 820 doi: 10.2355/isijinternational.ISIJINT-2015-466
    [53] Maschietto G N, Ouazene Y, Ravetti M G, et al. Crane scheduling problem with non-interference constraints in a steel coil distribution centre. Int J Prod Res, 2017, 55(6): 1607 doi: 10.1080/00207543.2016.1193249
    [54] Liu Q, Tian N Y, Wang Y Q, et al. Important role of crane schedule in optimizing mass flow control of steel plant. J Univ Sci Technol Beijing, 1998, 20(1): 36

    劉青, 田乃媛, 王英群, 等. 天車調度在優化鋼廠物流管制中的重要作用. 北京科技大學學報, 1998, 20(1):36
    [55] Xu L. Study on Simulation Method of Crane Scheduling in Workshop of Steel-making Plant Based on Cellular Automata[Dissertation]. Chongqing: Chongqing University, 2007

    徐樂. 基于元胞自動機的鋼廠車間天車調度仿真方法研究[學位論文]. 重慶: 重慶大學, 2007
    [56] Ma C B, Zhu D F, Wang H, et al. Simulation model for crane scheduling in workshop of steel-making plant based on MAS // 2010 International Conference on Computer Application and System Modeling. Taiyuan, 2010: V5-404
    [57] Liu W, Sun L L, Ding J L, et al. Study on ladle schedule of steel making process using heuristic scheduling algorithm. IFAC Proc Vol, 2011, 44(1): 8211 doi: 10.3182/20110828-6-IT-1002.02306
    [58] Sun L L, Liu W, Chai T Y, et al. Crane scheduling of steel-making and continuous casting process using the mixed-Timed Petri net modelling via CPLEX optimization. IFAC Proc Vol, 2011, 44(1): 9482 doi: 10.3182/20110828-6-IT-1002.00170
    [59] Xie X, Li Y P, Zhou H B, et al. Variable neighborhood search based multi-objective dynamic crane scheduling // Proceedings of 2012 International Conference on Measurement, Information and Control. Harbin, 2012: 457
    [60] Yu X. Research on Crane Scheduling of Steelmaking?Refining?Continuous Casting Production Process[Dissertation]. Shenyang: Northeastern University, 2012

    俞俠. 煉鋼–精煉–連鑄生產過程天車調度問題研究[學位論文]. 沈陽: 東北大學, 2012
    [61] Zhu D F, Wang H, Wang J J, et al. Simulation of crane scheduling systems for steel plant based on Petri Nets and UML. J Kunming Univ Sci Technol Sci Technol, 2013, 38(3): 5

    朱道飛, 王華, 王建軍, 等. 基于Petri網和UML的鋼廠天車調度系統仿真. 昆明理工大學學報: 自然科學版, 2013, 38(3):5
    [62] Zheng Z, Zhou C, Chen K. Crane scheduling simulation model based on immune genetic algorithms. Syst Eng —Theory Pract, 2013, 33(1): 223 doi: 10.3969/j.issn.1000-6788.2013.01.028

    鄭忠, 周超, 陳開. 基于免疫遺傳算法的車間天車調度仿真模型. 系統工程理論與實踐, 2013, 33(1):223 doi: 10.3969/j.issn.1000-6788.2013.01.028
    [63] Wang X, Liu S X, Wang J. Memetic algorithm for crane scheduling problem with spatial and temporal constraints. J Northeast Univ Nat Sci, 2014, 35(2): 190

    王旭, 劉士新, 王佳. 求解具有時空約束的天車調度問題Memetic算法. 東北大學學報: 自然科學版, 2014, 35(2):190
    [64] Jiang H Y. Optimization and Simulation on Crane Scheduling of Steelmaking–Continuous Casting Production Process[Dissertation]. Qingdao: Qingdao University of Technology, 2016

    姜海遠. 煉鋼–連鑄車間天車調度的仿真與優化[學位論文]. 青島: 青島理工大學, 2016
    [65] Gao X Q, Li P, Long J Y, et al. Multi-objective modelling and solving for crane scheduling with spatio-temporal constraints in casting workshop. Syst Eng —Theory Pract, 2017, 37(9): 2373 doi: 10.12011/1000-6788(2017)09-2373-11

    高小強, 李盼, 龍建宇, 等. 時空約束下連鑄車間天車調度的多目標建模與求解. 系統工程理論與實踐, 2017, 37(9):2373 doi: 10.12011/1000-6788(2017)09-2373-11
    [66] Li J, Xu A J, Zang X S. Simulation-based solution for a dynamic multi-crane-scheduling problem in a steelmaking shop. Int J Prod Res, 2019. https://doi.org/10.1080/00207543.2019.1687952
    [67] Pang X F, Liu W, Li H B, et al. Crane scheduling method in steelmaking?continuous casting process. Inform Control, 2019, 48(6): 745

    龐新富, 劉煒, 李海波, 等. 煉鋼–連鑄生產過程運輸設備天車調度方法. 信息與控制, 2019, 48(6):745
    [68] Yang J P, Zhang J S, Guan M, et al. Fine description of multi-process operation behavior in steelmaking?continuous casting process by a simulation model with crane non-collision constraint. Metals, 2019, 9(10): 1078 doi: 10.3390/met9101078
    [69] Liu Q, Tian N Y, Yin R Y. Operation principle and control strategy for steelmaking workshop system. Chin J Process Eng, 2003, 3(2): 171 doi: 10.3321/j.issn:1009-606X.2003.02.015

    劉青, 田乃媛, 殷瑞鈺. 煉鋼廠系統的運行原則與調控策略. 過程工程學報, 2003, 3(2):171 doi: 10.3321/j.issn:1009-606X.2003.02.015
    [70] Liu Q, Huang X W, Fu P Y. Production mode optimization of a steelmaking workshop system. J Univ Sci Technol Beijing, 2005, 27(6): 736 doi: 10.3321/j.issn:1001-053X.2005.06.024

    劉青, 黃星武, 富平原. 煉鋼廠系統生產模式優化. 北京科技大學學報, 2005, 27(6):736 doi: 10.3321/j.issn:1001-053X.2005.06.024
    [71] Yin R Y. Theory and Methods of Metallurgical Process Integration. Beijing: Metallurgical Industry Press, 2013

    殷瑞鈺. 冶金流程集成理論與方法. 北京: 冶金工業出版社, 2013
    [72] Liu Q, Yin J, Tian X Z, et al. Matching of productive capacity among working procedures and allocating of continuous casting machines for quality steel in a converter plant. J Univ Sci Technol Beijing, 2007, 29(8): 845 doi: 10.3321/j.issn:1001-053x.2007.08.021

    劉青, 尹佳, 田新中, 等. 轉爐煉鋼廠工序產能和品種鋼鑄機配置. 北京科技大學學報, 2007, 29(8):845 doi: 10.3321/j.issn:1001-053x.2007.08.021
    [73] Dong J G, Zheng Y Y, Jiang X F. Production line practice of Baosteel // Proceedings of 2015 Continuous Casting Equipment Technical Innovation and Refined Production Technology Exchange Meeting. Xi’an, 2015: 30

    董金剛, 鄭貽裕, 蔣曉放. 寶鋼產品專線化生產實踐//2015連鑄裝備的技術創新和精細化生產技術交流會. 西安, 2015: 30
    [74] Dong J G. Comparison and application of steelmaking production patterns // Proceedings of the 12th CSM Steel Congress. Beijing, 2019: 1

    董金剛. 煉鋼生產模式比較及應用//第12屆中國鋼鐵年會. 北京, 2019: 1
    [75] Mu Y Q, Yin J, Xie F M, et al. Research on matching between furnaces and casters in special steel plants. J Univ Sci Technol Beijing, 2013, 35(1): 126

    穆衍清, 尹佳, 謝飛鳴, 等. 特殊鋼廠爐機匹配研究. 北京科技大學學報, 2013, 35(1):126
    [76] Gu Z X, Xu A J, Chang J B, et al. Optimization of the production organization pattern in Tangshan Iron and Steel Co., Ltd. J Iron Steel Res Int, 2014, 21(Suppl 1): 17
    [77] Lu Y M, Tian N Y, Xu A J, et al. Establishment of the BOF-caster matching model for the process producing rods and wires. Metall Ind Autom, 2009(Suppl 2): 832

    蘆永明, 田乃媛, 徐安軍, 等. 棒線材生產流程爐機匹配模型的建立. 冶金自動化, 2009(增刊?2): 832
    [78] Lu Y M, Wang F, He D F, et al. Establishment of the BOF-caster matching model for the steelmaking plant producing plates and strips. J Univ Sci Technol Beijing, 2009, 31(9): 1189

    蘆永明, 王鋒, 賀東風, 等. 全板帶型鋼廠爐機匹配模型的建立. 北京科技大學學報, 2009, 31(9):1189
    [79] Chen R B, Qi H. Matching between converters and continuous casters. J Cent South Univ Sci Technol, 2011, 42(6): 1650

    陳若冰, 齊歡. 煉鋼–連鑄流程的爐機匹配. 中南大學學報: 自然科學版, 2011, 42(6):1650
    [80] Liu Q, Yin J, Wang B, et al. Research on rational collocation of LF in medium and small size BOF process // AISTech 2009-Proceedings of the Iron and Steel Technology Conference. St. Louis, 2009: 995
    [81] Zheng Z, Xu Z J, Gao X Q, et al. Simulation-based research on the production operation mode in steel plant // Proceedings of the 11th CSM Steel Congress. Beijing, 2017: 1

    鄭忠, 徐兆俊, 高小強, 等. 鋼廠生產運行模式的仿真研究//第11屆中國鋼鐵年會. 北京, 2017: 1
    [82] Yuan S P, Li T K, Wang B L. Improved fast elitist non-dominated sorting genetic algorithm for multi-objective steelmaking?continuous production scheduling. Comput Integr Manuf Syst, 2019, 25(1): 115

    袁帥鵬, 李鐵克, 王柏琳. 多目標煉鋼–連鑄生產調度的改進帶精英策略的快速非支配排序遺傳算法. 計算機集成制造系統, 2019, 25(1):115
    [83] Liu Q, Yang J P, Wang B L, et al. Genetic optimization model of steelmaking?continuous casting production scheduling based on the “furnace?caster coordinating” strategy. Chin J Eng, 2020, 42(5): 645

    劉倩, 楊建平, 王柏琳, 等. 基于“爐–機對應”的煉鋼–連鑄生產調度問題遺傳優化模型. 工程科學學報, 2020, 42(5):645
    [84] Liu Q, Liu Q, Yang J P, et al. Progress of research on steelmaking–continuous casting production scheduling. Chin J Eng, 2020, 42(2): 144

    劉青, 劉倩, 楊建平, 等. 煉鋼?連鑄生產調度的研究進展. 工程科學學報, 2020, 42(2):144
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  1863
  • HTML全文瀏覽量:  955
  • PDF下載量:  108
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-05-08
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回