Research progress in the recovery of valuable metals from zinc leaching residue and its total material utilization
-
摘要: 鋅浸出渣是一種具有較高綜合利用價值的固廢資源。本文針對鋅浸出渣中有價金屬的回收以及全質化利用的研究進展進行了歸納總結:鋅浸出渣中有價金屬的種類多,如鋅、鉛和銀等具有較高的回收價值,其回收工藝主要有火法工藝和濕法工藝。通過對多種典型鋅浸出渣回收工藝的優缺點和適用性的詳細比較分析,提出了微生物浸出?氯鹽浸出聯合的方法,該方法可高效浸出鋅浸出渣中的鋅、鉛和銀,對不同類型的鋅浸出渣具有良好的適用性,展現出了良好的工業應用前景;其次,介紹了鋅浸出渣全質化利用的進展,展望了技術發展方向,鋅浸出渣全質化利用將朝著制備性能優異、精細化和綠色節能的高端材料方向發展,在實現鋅冶煉行業清潔生產的同時努力獲得更大的經濟效益。Abstract: China has maintained the world’s highest zinc production for many years, which has generated a tremendous amount of zinc slag, and 60% of which has not been effectively treated. Most of this slag is zinc leaching residue produced by the hydrometallurgical processing of zinc. The accumulation and storage of zinc leaching residue requires large tracts of land and harmful elements like arsenic and cadmium in the residue contaminate the surrounding soil and groundwater. From another perspective, zinc leaching residue represents a solid waste resource with a very high comprehensive utilization value. For example, many valuable metals are present in zinc leaching residue, including zinc, lead, and silver, which have high recovery values. In addition, zinc leaching residue can be fully utilized to produce cement, glass, ceramics, and a range of chemical materials. The comprehensive recovery and total material utilization of zinc leaching residue would help to significantly reduce the burden of its storage. This paper summarized research progress on the recovery of valuable metals from and the total material utilization of zinc leaching residue. Two main methods were used to recover valuable metals from this residue: pyrometallurgical and hydrometallurgical processes. Based on a detailed comparative analysis of the advantages, disadvantages, and feasibility of various typical recovery processes, this paper proposed a combined method of bioleaching and chloride leaching for the efficient extraction of zinc, lead, and silver from zinc leaching residue. This combined method has good applicability to different types of zinc leaching residue and good prospects for industrial application. In addition, this paper introduced the progress achieved in the total material utilization of zinc leaching residue and the future development prospects for utilization technologies. The total material utilization of zinc leach residue should be developed to product high-performance, sophisticated, environment-friendly and energy-efficient materials. Greater economic benefit can be gained while realizing clean production in the zinc industry.
-
Key words:
- zinc leaching residue /
- recovery /
- bioleaching /
- solid waste treatment /
- resource utilization
-
表 1 國內鋅冶煉廠鋅浸出渣中有價金屬成分及含量
Table 1. Compositions and contents of valuable metals in zinc leaching residues of Chinese zinc plants
Factory address Mass fraction of
Zn / %Mass fraction of
Pb / %Ag /
(g?t?1)Mass fraction of
Fe / %Mass fraction of
Cu / %Mass fraction of
Mn / %References Hunan 35.99 1.73 15.93 0.52 0.74 [6] Guangdong 19.88 3.77 550 24.72 [7] Yunnan 24.75 0.099 97.2 25.68 1.12 0.13 [8] Western Hunan 3.941 6.401 7.757 0.416 [9] Shandong 7.85 5.20 350 9.51 [10] Domestic somewhere 16.52 4.62 200.29 19.24 0.35 [11] Inner Mongolia 3.34 6.81 600 17.04 0.18 [12] 表 2 氯鹽浸出鋅浸出渣中鉛和銀的部分研究結果
Table 2. Analyses of the lead and silver leached from zinc residue by chloride leaching
Material types Chloride systems Technological conditions Contents of Pb and Ag Leaching rate/% References Mass fraction
of Pb / %Contents of Ag / (g?t?1) Pb Ag Zinc leaching residue NaCl+CaCl2+HCl NaCl 300 g?L?1, CaCl2 50 g?L?1, L/S 8∶1,leaching temperature 85 ℃, leaching time 2.5 h 10.51 644 94.43 91.48 [43] Zinc leaching residue NaCl+HCl NaCl 350 g?L?1, L/S 15∶1, leaching temperature 95 ℃, leaching time 2 h 12.26 651 96.6 82.1 [44] Zinc leaching residue NaCl+H2SO4 NaCl 300 g?L?1, L/S 5∶1, leaching temperature 90 ℃, leaching time 3 h 4.44 187.9 91 97 [45] Zinc leaching residue CaCl2+NaCl+HCl NaCl 300 g?L?1, CaCl2 25 g?L?1, L/S 20∶3, leaching temperature 80 ℃, leaching time 2 h 31.33 219.69 95.01 95.05 [46] Silver flotation concentrate of zinc leaching residue NaCl+CaCl2+HCl NaCl 300 g?L?1, CaCl2 18 g?L?1, L/S 4∶1, leaching temperature 85 ℃, leaching time 1 h 1.86 5500 96 97 [47] Zinc leaching residue NaCl+H2SO4 NaCl 300 g?L?1, L/S 5∶1, initial acid concentration 200 g?L?1, leaching temperature 90 ℃, leaching time 2 h 5.41 297 94.88 93.24 [48] 表 3 微生物浸出含鋅物料的研究結果
Table 3. Analyses of the bioleaching of zinc-containing materials
Zinc-containing materials Bacteria species Technological conditions Zinc leaching rate / % References Waste Zn?Mn battery Thiobacillus thiooxidans, Leptospirillum ferriphilum Leaching temperature 33 ℃, pH 1.9, pulp density 5%, leaching time 13 days 85.1 [59] Lead and zinc sulfide ore tailings Thiobacillus ferrooxidans Leaching temperature 30 ℃, pH 2.0, pulp density 5%, leaching time 50 days 97.85 [60] Zinc leaching residue Thiobacillus thiooxidans Leaching temperature 30 ℃, pH 3.3, pulp density 2%, leaching time 45 days 79 [61] Zinc-containing copper ore Thiobacillus thiooxidans, Leptospirillum ferriphilum Leaching temperature 30 ℃, pH 1.5, pulp density 10%, leaching time 6 days 74.35 [62] Waste brake pad Thiobacillus thiooxidans, Thiobacillus ferrooxidans Leaching temperature 30 ℃, pH 1.0, pulp density 4%, leaching time 9 days 72 [63] 259luxu-164 -
參考文獻
[1] Liu Y T, Xu L, Du Q S. Distribution of lead-zinc resources and proposals for Chinese mining companies. Resour Ind, 2017, 19(5): 71劉永團, 許磊, 杜青松. 鉛鋅礦資源分布現狀及中資企業開發建議. 資源與產業, 2017, 19(5):71 [2] Li H W, An J J, Yuan H X, et al. Study on comprehensive utilization of historical left lead and zinc smelting slag. Environ Eng, 2016, 34(Suppl 1): 661李洪偉, 安俊菁, 袁紅欣, 等. 歷史遺留鉛鋅冶煉廢渣的綜合利用技術研究. 環境工程, 2016, 34(增刊1): 661 [3] Du Z H, Zhu G X, Zhou K Q, et al. Heavy metal pollution of soils and crops in one zinc smelting slag field in northwestern Guizhou Province. J Green Sci Technol, 2016(20): 61 doi: 10.3969/j.issn.1674-9944.2016.20.023杜志會, 朱光旭, 周開群, 等. 黔西北某煉鋅渣堆場周邊土壤及農產品重金屬污染研究. 綠色科技, 2016(20):61 doi: 10.3969/j.issn.1674-9944.2016.20.023 [4] Yang J L, Xiao H X, Luo M X, et al. Overview of zinc smelting method. Met Mater Metall Eng, 2016, 44(3): 41楊金林, 肖漢新, 羅美秀, 等. 鋅的冶煉方法概述. 金屬材料與冶金工程, 2016, 44(3):41 [5] Wang Y. Application of pressure hydrometallurgical technology in zinc smelting. Metall Mater, 2018, 38(4): 91 doi: 10.3969/j.issn.1674-5183.2018.04.053王亞. 鋅冶煉上加壓濕法冶金技術的運用. 冶金與材料, 2018, 38(4):91 doi: 10.3969/j.issn.1674-5183.2018.04.053 [6] Min X B, Zhang J Q, Zhang C, et al. Reductive leaching behavior of zinc from neutral leaching residue in zinc smelting. Nonferrous Met Sci Eng, 2015, 6(5): 1閔小波, 張建強, 張純, 等. 鋅冶煉中浸渣鋅還原浸出行為研究. 有色金屬科學與工程, 2015, 6(5):1 [7] Yin Z H. Comprehensive recovery of Ga and Ge Ag from leaching residue of Danxia Zinc Smelter. Nonferrous Met, 2009, 61(4): 94尹朝暉. 從丹霞冶煉廠鋅浸出渣中綜合回收鎵和鍺. 有色金屬, 2009, 61(4):94 [8] Zhu B P, Deng Z G, Zhang F, et al. Reducing ferric and leaching of zinc and indium from residue bearing indium-zinc-ferric. Min Metall, 2016, 25(4): 36 doi: 10.3969/j.issn.1005-7854.2016.04.009朱北平, 鄧志敢, 張帆, 等. 富銦鋅鐵渣中鋅和銦的浸出與鐵的同步還原. 礦冶, 2016, 25(4):36 doi: 10.3969/j.issn.1005-7854.2016.04.009 [9] Hu Y L, Yan W B, Gao F, et al. Study on oxidizing leaching zinc and cadmium from neutral residue in zinc smelting. Appl Chem Ind, 2016, 45(3): 441胡亞莉, 顏文斌, 高峰, 等. 鋅冶煉中浸渣氧化浸出鋅和鎘的研究. 應用化工, 2016, 45(3):441 [10] Guo X N, Zhang Y L, Yu X J, et al. Recovery zinc from zinc leaching residues by hydrometallurgical process. Hydrometall China, 2012, 31(1): 33 doi: 10.3969/j.issn.1009-2617.2012.01.009郭曉娜, 張亞莉, 于先進, 等. 從鋅浸出渣中濕法回收鋅. 濕法冶金, 2012, 31(1):33 doi: 10.3969/j.issn.1009-2617.2012.01.009 [11] Lu Z, Cheng Q Y, Pan L H. Silver recovery from hydrometallurgical zinc residue. Nonferrous Met (Miner Process Sect) , 2015(4): 51陸智, 程秦豫, 潘蓮輝. 從鋅冶煉酸浸渣中回收銀. 有色金屬(選礦部分), 2015(4):51 [12] Zhang C, Min X B, Zhang J Q, et al. Mechanisms and kinetics on reductive leaching of zinc from zinc neutral leaching residue. Chin J Nonferrous Met, 2016, 26(1): 197張純, 閔小波, 張建強, 等. 鋅冶煉中浸渣鋅還原浸出機制與動力學. 中國有色金屬學報, 2016, 26(1):197 [13] Di J H, Pan C C, Pang J M, et al. Technology and application of cooperative disposal of zinc solid waste by direct reduction rotary kiln. China Metall, 2019, 29(10): 71邸久海, 潘聰超, 龐建明, 等. 直接還原回轉窯協同處理含鋅固廢技術及應用. 中國冶金, 2019, 29(10):71 [14] Chen C. Current situation and development of fuming converting technology. China Nonferrous Metall, 2017, 46(1): 23 doi: 10.3969/j.issn.1672-6103.2017.01.006陳萃. 煙化吹煉技術的現狀和發展. 中國有色冶金, 2017, 46(1):23 doi: 10.3969/j.issn.1672-6103.2017.01.006 [15] Lu Y F, Xiong G H, He Y M. Analysis on resource utilization of zinc leaching residue. Yunnan Metall, 2014, 43(1): 93 doi: 10.3969/j.issn.1006-0308.2014.01.020盧宇飛, 熊國煥, 何艷明. 鋅冶煉浸出渣資源化利用技術分析. 云南冶金, 2014, 43(1):93 doi: 10.3969/j.issn.1006-0308.2014.01.020 [16] Xu W G, Li W L, Wang P F. Commercial production practice of zinc leaching residue treatment process by top-blowing furnace. China Nonferrous Metall, 2018, 47(5): 6 doi: 10.3969/j.issn.1672-6103.2018.05.002徐萬剛, 李文龍, 王鵬飛. 頂吹爐處理鋅浸出渣工藝技術產業化實踐. 中國有色冶金, 2018, 47(5):6 doi: 10.3969/j.issn.1672-6103.2018.05.002 [17] Lei H Z, Yang G C, Li Y G, et al. Study on technology of metallic zinc recovery from zinc slag direct thermal processing. Yunnan Metall, 2018, 47(4): 63 doi: 10.3969/j.issn.1006-0308.2018.04.012雷華志, 楊光燦, 李雨耕, 等. 從鋅渣中直接熱力回收金屬鋅的工藝研究. 云南冶金, 2018, 47(4):63 doi: 10.3969/j.issn.1006-0308.2018.04.012 [18] Ghayad I M, El-Ansary A L, Aziz Z A A, et al. Recovery of zinc from zinc dross using pyrometallurgical and electrochemical methods. Egypt J Chem, 2019, 62(2): 373 [19] Tang L, Tang C B, Xiao J, et al. A cleaner process for lead recovery from lead-containing hazardous solid waste and zinc leaching residue via reducing-matting smelting. J Cleaner Prod, 2019, 241: 118328 doi: 10.1016/j.jclepro.2019.118328 [20] Steinlechner S, Antrekowitsch J. Extraction of zinc, silver and indium via vaporization from jarosite residue // Gaustad G, Fleuriault C, G?kelma M, et al. REWAS 2019: Manufacturing the Circular Materials Economy. Switzerland: Springer, 2019 [21] Huang W H, Liu T. Side blowing furnace application situation and development prospect. Copper Eng, 2017(3): 54 doi: 10.3969/j.issn.1009-3842.2017.03.015黃文華, 劉濤. 側吹爐的應用現狀和發展前景. 銅業工程, 2017(3):54 doi: 10.3969/j.issn.1009-3842.2017.03.015 [22] Li Y B. The smelting process of sulfur residue and zinc residues mixture treatment. Copper Eng, 2014(1): 14 doi: 10.3969/j.issn.1009-3842.2014.01.005李允斌. 氧浸渣搭配處理鋅浸出渣的冶煉方法. 銅業工程, 2014(1):14 doi: 10.3969/j.issn.1009-3842.2014.01.005 [23] Rao S, Wang D X, Liu Z Q, et al. Selective extraction of zinc, gallium, and germanium from zinc refinery residue using two stage acid and alkaline leaching. Hydrometallurgy, 2019, 183: 38 doi: 10.1016/j.hydromet.2018.11.007 [24] Guan Y J. Study on iron leaching and pH value of Fe3+ hydrolysis in zinc hydrometallurgy. Chin J Rare Met, 2006, 30(3): 419 doi: 10.3969/j.issn.0258-7076.2006.03.034關亞君. 濕法煉鋅常規工藝鐵的浸出及沉鐵pH值的研究. 稀有金屬, 2006, 30(3):419 doi: 10.3969/j.issn.0258-7076.2006.03.034 [25] Lu X W, Cheng L, Li Y L, et al. Experimental research on optimization and improvement of iron removal process for zinc hydrometallurgy. Nonferrous Met (Extr Metall) , 2018(11): 7魯興武, 程亮, 李俞良, 等. 鋅冶煉除鐵工藝優化改進試驗研究. 有色金屬(冶煉部分), 2018(11):7 [26] Zhang F, Wei C, Deng Z G, et al. Reductive leaching of zinc and indium from industrial zinc ferrite particulates in sulphuric acid media. Trans Nonferrous Met Soc China, 2016, 26(9): 2495 doi: 10.1016/S1003-6326(16)64342-X [27] Yu G, Peng N, Zhou L, et al. Selective reduction process of zinc ferrite and its application in treatment of zinc leaching residues. Trans Nonferrous Met Soc China, 2015, 25(8): 2744 doi: 10.1016/S1003-6326(15)63899-7 [28] Li Y C, Liu H, Peng B, et al. Study on separating of zinc and iron from zinc leaching residues by roasting with ammonium sulphate. Hydrometallurgy, 2015, 158: 42 doi: 10.1016/j.hydromet.2015.10.004 [29] Shi Z W, Yang S J, Xue Q H. Recovery of zinc from lead-zinc slag using ammonia. Hydrometall China, 2019, 38(4): 271石振武, 楊守潔, 薛群虎. 從鉛鋅廢渣中氨浸鋅試驗研究. 濕法冶金, 2019, 38(4):271 [30] Wang H W, Du X L, He Y, et al. Industrial test on process optimization for silver flotation from zinc-leached residues. Precious Met, 2018, 39(2): 13 doi: 10.3969/j.issn.1004-0676.2018.02.003王紅偉, 杜新玲, 何意, 等. 鋅浸出渣中銀浮選工藝優化工業試驗. 貴金屬, 2018, 39(2):13 doi: 10.3969/j.issn.1004-0676.2018.02.003 [31] Song B X, Qiu X Y, Ran J C, et al. Behavior of argentite in the sulphide flotation system. Precious Met, 2018, 39(2): 24 doi: 10.3969/j.issn.1004-0676.2018.02.005宋寶旭, 邱顯揚, 冉金城, 等. 硫化礦浮選體系中輝銀礦的浮選行為研究. 貴金屬, 2018, 39(2):24 doi: 10.3969/j.issn.1004-0676.2018.02.005 [32] Lan Z Q. Study on Flotation Behavior and Mechanism of Galena Containing Silver[Dissertation]. Kunming: Kunming University of Science and Technology, 2017蘭志強. 含銀方鉛礦的浮選行為及機理研究[學位論文]. 昆明: 昆明理工大學, 2017 [33] Zhang R, Li H J. Research and practice of reducing silver in zinc tailings of conventional hydrometallurgy. World Nonferrous Met, 2019(23): 7 doi: 10.3969/j.issn.1002-5065.2019.23.003張蕊, 李恒江. 降低常規濕法煉鋅尾渣銀的研究與實踐. 世界有色金屬, 2019(23):7 doi: 10.3969/j.issn.1002-5065.2019.23.003 [34] Liu A R, Wang Z Q, Yao H L, et al. Optimization of Ag/Fe separation flowsheet for reclamation of hydrometallurgical zinc residue. Min Metall Eng, 2016, 36(3): 51 doi: 10.3969/j.issn.0253-6099.2016.03.013劉安榮, 王在謙, 姚華龍, 等. 鋅浸渣中銀鐵分離富集試驗研究. 礦冶工程, 2016, 36(3):51 doi: 10.3969/j.issn.0253-6099.2016.03.013 [35] Wang X M, Wang G P. Industrial reform practices for silver flotation of zinc conventional process leaching residues. Hunan Nonferrous Met, 2016, 32(4): 46 doi: 10.3969/j.issn.1003-5540.2016.04.013王學猛, 王桂萍. 常規流程中鋅浸出渣浮選銀的工業改造實踐. 湖南有色金屬, 2016, 32(4):46 doi: 10.3969/j.issn.1003-5540.2016.04.013 [36] Li G D. Study on the Process and Mechanism for Comprehensive Recovery of Gold, Silver, Lead and Zinc from Pb-Ag Residue[Dissertation]. Beijing: University of Science and Technology Beijing, 2017李國棟. 從鉛銀渣中綜合回收金銀鉛鋅的工藝和機理研究[學位論文]. 北京: 北京科技大學, 2017 [37] Yang J L, Liao S Z, Liu J G, et al. Experimental research on flotation of zinc leaching residue. J Guangxi Univ (Nat Sci Ed) , 2019, 44(5): 1399楊金林, 廖仕臻, 劉繼光, 等. 鋅浸出渣浮選試驗研究. 廣西大學學報:自然科學版, 2019, 44(5):1399 [38] Yao W, Li M L, Zhang M, et al. Lead recovery from zinc leaching residue by flotation. JOM, 2019, 71(12): 4588 doi: 10.1007/s11837-019-03526-4 [39] Zhang Y H, Jin B J, Song Q H, et al. Leaching behavior of lead and silver from lead sulfate hazardous residues in NaCl?CaCl2?NaClO3 media. JOM, 2019, 71(7): 2388 doi: 10.1007/s11837-019-03472-1 [40] Ouyang H C. Lead anode slime pretreatment test. Hunan Nonferrous Met, 2016, 32(4): 33 doi: 10.3969/j.issn.1003-5540.2016.04.009歐陽洪川. 鉛陽極泥濕法預處理試驗研究. 湖南有色金屬, 2016, 32(4):33 doi: 10.3969/j.issn.1003-5540.2016.04.009 [41] Zhang Y F, Zhang H R, Zhong S P, et al. Study on extraction of lead & bismuth from Kaldo furnace smelting slag. Nonferrous Met (Extr Metall) , 2017(11): 21張永鋒, 張煥然, 衷水平, 等. 卡爾多爐熔煉渣提取鉛鉍工藝研究. 有色金屬(冶煉部分), 2017(11):21 [42] Xing P, Wang C Y, Wang L, et al. Hydrometallurgical recovery of lead from spent lead-acid battery paste via leaching and electrowinning in chloride solution. Hydrometallurgy, 2019, 189: 105134 doi: 10.1016/j.hydromet.2019.105134 [43] Zhou Q F, Jiang K X, Wang H B, et al. Study on hydrometallurgical extraction of lead-silver residue from zinc industry. Nonferrous Met (Extr Metall) , 2018(6): 1周起帆, 蔣開喜, 王海北, 等. 鋅冶煉鉛銀渣濕法浸出工藝研究. 有色金屬(冶煉部分), 2018(6):1 [44] Zhang Y L, Yu X J, Li X B. Kinetics of simultaneous leaching of Ag and Pb from hydrometallurgical zinc residues by chloride. Rare Met, 2012, 31(4): 402 doi: 10.1007/s12598-012-0528-1 [45] Gao L X, Dai Z L, Li G Y, et al. High efficiency recovery of silver from slag of zinc hydrometallurgy. Nonferrous Met (Extr Metall) , 2016(4): 45高麗霞, 戴子林, 李桂英, 等. 從濕法鋅冶煉廢渣中高效回收銀的研究. 有色金屬(冶煉部分), 2016(4):45 [46] Zhou C C, Hou J, Guo N, et al. Research of high lead residue treatment with chlorine salt hydrometallurgical process. China Nonferrous Metall, 2017, 46(5): 72 doi: 10.3969/j.issn.1672-6103.2017.05.018周沖沖, 侯劍, 郭寧, 等. 氯鹽濕法處理高鉛渣的研究. 中國有色冶金, 2017, 46(5):72 doi: 10.3969/j.issn.1672-6103.2017.05.018 [47] Niu Q X, Zhou C C, Guo N. Test on treatment of flotation silver concentrate from zinc hydrometallurgy with chloride system. China Nonferrous Metall, 2018, 47(3): 38牛勤學, 周沖沖, 郭寧. 氯鹽體系處理濕法煉鋅浮選銀精礦試驗研究. 中國有色冶金, 2018, 47(3):38 [48] Li G D, Lin H, Dong Y B, et al. Hydrometallurgy asynchronous recovery of zinc, lead and silver from Pb?Ag residue. Chin J Rare Met, 2017, 41(10): 1143李國棟, 林海, 董穎博, 等. 濕法冶金法從鉛銀渣中異步回收鋅、鉛銀的試驗研究. 稀有金屬, 2017, 41(10):1143 [49] Xing P, Ma B Z, Zeng P, et al. Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals. Int J Miner Metall Mater, 2017, 24(11): 1217 doi: 10.1007/s12613-017-1514-2 [50] Ren J, Shen K B, Liu L, et al. Treatment of lead and silver residue in zinc hydrometallurgy and its recovery process. China Nonferrous Metall, 2019, 48(1): 39 doi: 10.3969/j.issn.1672-6103.2019.01.010任杰, 申開榜, 劉樂, 等. 濕法煉鋅鉛銀渣深度處理及回收工藝. 中國有色冶金, 2019, 48(1):39 doi: 10.3969/j.issn.1672-6103.2019.01.010 [51] Lei C, Yan B, Chen T, et al. Silver leaching and recovery of valuable metals from magnetic tailings using chloride leaching. J Cleaner Prod, 2018, 181: 408 doi: 10.1016/j.jclepro.2018.01.243 [52] Gao L X, Dai Z L, Zhang K F, et al. Extraction of silver and lead from slag of zinc hydrometallurgy. Nonferrous Met (Extr Metall) , 2018(5): 29高麗霞, 戴子林, 張魁芳, 等. 從濕法鋅冶煉廢渣中提取銀和鉛. 有色金屬(冶煉部分), 2018(5):29 [53] Sun H Y, Sen W, Kong X, et al. Leaching of lead from lead-silver slag in chloride system. Hydrometall China, 2016, 35(2): 110孫紅燕, 森維, 孔馨, 等. 用氯鹽從鉛銀渣中浸出鉛. 濕法冶金, 2016, 35(2):110 [54] Binnemans K, Jones P T. Solvometallurgy: An emerging branch of extractive metallurgy. J Sustainable Metall, 2017, 3(3): 570 doi: 10.1007/s40831-017-0128-2 [55] Palden T, Regadío M, Onghena B, et al. Selective metal recovery from jarosite residue by leaching with acid-equilibrated ionic liquids and precipitation-stripping. ACS Sustainable Chem Eng, 2019, 7(4): 4239 doi: 10.1021/acssuschemeng.8b05938 [56] Rodriguez N R, Onghena B, Binnemans K. Recovery of lead and silver from zinc leaching residue using methanesulfonic acid. ACS Sustainable Chem Eng, 2019, 7(24): 19807 doi: 10.1021/acssuschemeng.9b05116 [57] Li X, Gao W C, Wen J K, et al. Technology status and research progress of zinc bioleaching. Chin J Eng, 2020, 42(6): 693李旭, 高文成, 溫建康, 等. 鋅的生物浸出技術現狀及研究進展. 工程科學學報, 2020, 42(6):693 [58] Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143尹升華, 王雷鳴, 吳愛祥, 等. 我國銅礦微生物浸出技術的研究進展. 工程科學學報, 2019, 41(2):143 [59] Niu Z R. Characteristics and Mechanism of the Bioleaching of the Spent Zn−Mn Batteries at High Pulp Density and Its Resource Utilization[Dissertation]. Beijing: Beijing Institute of Technology, 2016牛志睿. 高固液比下廢舊鋅錳電池生物淋瀝的特性、機理和資源化利用[學位論文]. 北京: 北京理工大學, 2016 [60] Ye M Y. Studies on Bioleaching of Metals and Leaching Mechanism from Lead-Zinc Sulfide Mine Tailings[Dissertation]. Guangzhou: Guangdong University of Technology, 2017葉茂友. 鉛鋅硫化尾礦中金屬的生物浸出行為及浸出機理的研究[學位論文]. 廣州: 廣東工業大學, 2017 [61] Sethurajan M, Lens P N L, Rene E R, et al. Bioleaching and selective biorecovery of zinc from zinc metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil). J Chem Technol Biotechnol, 2017, 92(3): 512 doi: 10.1002/jctb.5026 [62] Sajjad J, Zheng G D, Zhang G S, et al. Bioleaching of copper and zinc bearing ore using consortia of indigenous iron oxidizing bacteria. Extremophiles, 2018, 22: 851 [63] Zhang M, Guo X M, Tian B Y, et al. Improved bioleaching of copper and zinc from brake pad waste by low-temperature thermal pretreatment and its mechanisms. Waste Manage, 2019, 87: 629 doi: 10.1016/j.wasman.2019.02.047 [64] Li Y, Deng X, Jin K S, et al. Experimental study of the rhizobium and iron oxide thiobacillus for heap leaching of zinc leaching slag. Guizhou Sci, 2012, 30(4): 47 doi: 10.3969/j.issn.1003-6563.2012.04.011李勇, 鄧興, 金開勝, 等. 根瘤菌與氧化鐵硫桿菌堆浸鋅浸出渣的試驗研究. 貴州科學, 2012, 30(4):47 doi: 10.3969/j.issn.1003-6563.2012.04.011 [65] Zhang J, Zou P, Sun P S, et al. A combined chemical and biological leaching process for secondary copper sulfide concentrate. Min Metall Eng, 2015, 35(6): 122 doi: 10.3969/j.issn.0253-6099.2015.06.031張婧, 鄒平, 孫珮石, 等. 化學-生物聯合浸出次生硫化銅精礦的研究. 礦冶工程, 2015, 35(6):122 doi: 10.3969/j.issn.0253-6099.2015.06.031 [66] Wang L L, Sun X Y, Li Q, et al. Optimization of two-step leaching of copper from waste printed circuit board. Chin J Environ Eng, 2018, 12(1): 250 doi: 10.12030/j.cjee.201705115王莉莉, 孫秀云, 李橋, 等. 廢棄印刷線路板中銅的兩步浸出工藝優化. 環境工程學報, 2018, 12(1):250 doi: 10.12030/j.cjee.201705115 [67] Ge Z Y. Study on Gold Leaching from the Waste Printed Circuit Boards by Pseudomonas Fluorescens[Dissertation]. Qingdao: Qingdao University of Science and Technology, 2017葛忠英. 熒光假單胞菌從廢棄線路板中浸金的實驗研究[學位論文]. 青島: 青島科技大學, 2017 [68] Shi Z W, Xue Q H. Progress on domestic investigation of building materials conversion from lead-zinc tailing. Bull Chin Ceram Soc, 2018, 37(2): 508石振武, 薛群虎. 國內鉛鋅尾礦建材化研究進展. 硅酸鹽通報, 2018, 37(2):508 [69] Fan D Q, Shui Z H, Yu R, et al. Preparation of eco-friendly ultra-high performance concrete by lead-zinc tailings. Bull Chin Ceram Soc, 2018, 37(7): 2231范定強, 水中和, 余睿, 等. 鉛鋅尾礦回收制備環保型超高性能混凝土研究. 硅酸鹽通報, 2018, 37(7):2231 [70] Chen Z F, Xiao L F, Tao Q W, et al. Research on the effect of lead-zinc tailings sand on the shielding performance of concrete to gamma ray. Ind Construct, 2019, 49(12): 133陳振富, 肖莉芳, 陶秋旺, 等. 鉛鋅尾礦砂混凝土對伽馬射線屏蔽性能影響的研究. 工業建筑, 2019, 49(12):133 [71] Chen Z H, Qin Z H. Experimental research on aerated concrete with lead-zinc tailings. World Build Mater, 2018, 39(6): 9陳智華, 秦哲煥. 鉛鋅尾礦制備加氣混凝土的試驗研究. 建材世界, 2018, 39(6):9 [72] Liu Q, Tang W B, Zhao G D. Preparation and mechanical properties of alkali leaching of lead zinc slag geopolymer. Bull Chin Ceram Soc, 2018, 37(8): 2650劉清, 唐衛兵, 招國棟. 堿浸鉛鋅渣地聚物的制備及其力學性能研究. 硅酸鹽通報, 2018, 37(8):2650 [73] Qu X L. Research on porosity ceramics prepared from ceramic slurry and heavy metal tailings. Ceramics, 2018(9): 17 doi: 10.3969/j.issn.1002-2872.2018.09.003區雪連. 重金屬尾礦與陶瓷漿制備發泡陶瓷的工藝研究. 陶瓷, 2018(9):17 doi: 10.3969/j.issn.1002-2872.2018.09.003 [74] Liu T Y, Li X Y, Guan L M, et al. Low-cost and environment-friendly ceramic foams made from lead–zinc mine tailings and red mud: Foaming mechanism, physical, mechanical and chemical properties. Ceram Int, 2016, 42(1): 1733 doi: 10.1016/j.ceramint.2015.09.131 [75] Li C, Xu Y L, Yu Y, et al. The preparation and research of unburned and absorptive bricks of Pb-Zn mine tailings. Mater Sci Technol, 2016, 24(4): 46 doi: 10.11951/j.issn.1005-0299.20160407李沖, 許亞麗, 于巖, 等. 鉛鋅尾礦免燒吸附磚的制備與研究. 材料科學與工藝, 2016, 24(4):46 doi: 10.11951/j.issn.1005-0299.20160407 [76] Wu S B, Li Y, Ding Y F, et al. Study on preparation of polyferric zinc silicate sulfate flocculant by zinc kiln slag. Ind Miner Process, 2019, 48(7): 60吳素彬, 李勇, 丁元法, 等. 利用鋅窯渣直接制備聚硅酸硫酸鐵鋅絮凝劑的研究. 化工礦物與加工, 2019, 48(7):60 [77] Zuo H E. Study on the Purification of Arsenic Wastewater with High Iron Concentration and the Preparation of Composite Salt Flocculant[Dissertation]. Beijing: General Research Institute for Nonferrous Metals, 2019左豪恩. 鋅冶煉高鐵含砷廢水凈化及制備鐵鋅復鹽絮凝劑研究[學位論文]. 北京: 北京有色金屬研究總院, 2019 [78] Wang Y J, Pan M Y, Zhang Z R, et al. Comprehensive utilization of zinc slag and paste-like amino acids for producing complex chelated amino acidic zinc (Ⅱ) compounds. Guangzhou Chem Ind, 2019, 47(16): 71 doi: 10.3969/j.issn.1001-9677.2019.16.030王艷君, 潘夢雅, 張擇瑞, 等. 鋅渣與膏狀氨基酸應用于生產復合螯合氨基酸鋅的綜合利用. 廣州化工, 2019, 47(16):71 doi: 10.3969/j.issn.1001-9677.2019.16.030 [79] Hao X P, Han J W, Gao Z Q, et al. Comprehensive utilization of zinc smelting slag. Inorg Chem Ind, 2017, 49(7): 55郝曉平, 韓進文, 高志強, 等. 鋅冶煉廢渣的綜合利用. 無機鹽工業, 2017, 49(7):55 [80] Li Y H, Cao M F, Cao S H, et al. Study on extraction of high quality reduced iron powder and carbon powder from zinc volatile kiln slag. World Nonferrous Met, 2019(8): 149 doi: 10.3969/j.issn.1002-5065.2019.08.086李永華, 曹明鋒, 曹樹華, 等. 鋅揮發窯渣提取優質還原鐵粉和碳粉的工藝研究. 世界有色金屬, 2019(8):149 doi: 10.3969/j.issn.1002-5065.2019.08.086 -

計量
- 文章訪問數: 2317
- HTML全文瀏覽量: 1412
- PDF下載量: 139
- 被引次數: 0