<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

射頻磁控濺射制備(In, Co)共摻ZnO薄膜的電學和磁學性質

劉芬 代明江 林松盛 石倩 孫琿

劉芬, 代明江, 林松盛, 石倩, 孫琿. 射頻磁控濺射制備(In, Co)共摻ZnO薄膜的電學和磁學性質[J]. 工程科學學報, 2021, 43(3): 385-391. doi: 10.13374/j.issn2095-9389.2020.01.11.002
引用本文: 劉芬, 代明江, 林松盛, 石倩, 孫琿. 射頻磁控濺射制備(In, Co)共摻ZnO薄膜的電學和磁學性質[J]. 工程科學學報, 2021, 43(3): 385-391. doi: 10.13374/j.issn2095-9389.2020.01.11.002
LIU Fen, DAI Ming-jiang, LIN Song-sheng, SHI Qian, SUN Hui. Electrical and magnetic properties of (In, Co) co-doped ZnO films deposited using radio frequency magnetron sputtering[J]. Chinese Journal of Engineering, 2021, 43(3): 385-391. doi: 10.13374/j.issn2095-9389.2020.01.11.002
Citation: LIU Fen, DAI Ming-jiang, LIN Song-sheng, SHI Qian, SUN Hui. Electrical and magnetic properties of (In, Co) co-doped ZnO films deposited using radio frequency magnetron sputtering[J]. Chinese Journal of Engineering, 2021, 43(3): 385-391. doi: 10.13374/j.issn2095-9389.2020.01.11.002

射頻磁控濺射制備(In, Co)共摻ZnO薄膜的電學和磁學性質

doi: 10.13374/j.issn2095-9389.2020.01.11.002
基金項目: 國家自然科學基金資助項目(62004117);中國博士后基金面上資助項目(2019M651199);山東省自然科學基金資助項目(ZR2018QEM002);廣東省現代表面工程技術重點實驗室課題資助項目;山東大學(威海)青年學者未來計劃資助項目
詳細信息
    通訊作者:

    E-mail:huisun@sdu.edu.cn

  • 中圖分類號: TB34

Electrical and magnetic properties of (In, Co) co-doped ZnO films deposited using radio frequency magnetron sputtering

More Information
  • 摘要: (In, Co)共摻的ZnO薄膜(ICZO薄膜)在100 ℃下通過射頻(RF)濺射沉積至玻璃基板上。沉積過程采用In、Co、Zn三靶共濺射。通過調節靶功率,獲得了不同In含量的ICZO薄膜。研究了不同In含量下薄膜電學性質和磁學性質的變化。分別使用掃描電子顯微鏡(SEM)、高分辨透射電子顯微鏡(HR-TEM)、原子力顯微鏡(AFM)、電子探針掃描(EPMA)、X射線衍射儀(XRD)、霍爾測試(Hall measurement)和振動樣品磁強計(VSM)對薄膜的成分、形貌、結構、電學特性和磁學特性進行了表征和分析。詳細分析了薄膜中載流子濃度對磁學性質的影響。實驗結果表明,隨著薄膜中In含量的提高,薄膜中載流子濃度顯著提高,薄膜的導電性得到優化。所有的薄膜均表現出室溫下的鐵磁特性。與此同時,束縛磁極化子(BMP)模型與交換耦合效應兩種不同的機制作用于ICZO半導體材料,致使薄膜的飽和磁化強度隨載流子濃度發生改變,并呈現在三個不同的區域。

     

  • 圖  1  (In, Co)?ZnO薄膜中In含量隨著In2O3靶功率的變化

    Figure  1.  In content in (In, Co)?ZnO thin films as a function of the sputtering power applied on In2O3 target

    圖  2  不同In含量的(In, Co)-ZnO薄膜的X射線衍射圖

    Figure  2.  X-ray diffraction patterns of (In, Co)-ZnO films with various In2O3 contents

    圖  3  薄膜的表面掃描電鏡圖像和原子力顯微鏡圖像。(a) 純ZnO;(b)(In, Co)?ZnO(In原子數分數3.4%)

    Figure  3.  Top surface SEM micrographs and AFM images: (a) pure ZnO; (b) (In, Co)?ZnO (atomic ratio of In is 3.4%)

    圖  4  薄膜的橫截面透射電鏡圖像。(a)純ZnO;(b)(In, Co)?ZnO(In原子數分數3.4%);(a1)圖(a)紅色區域放大圖;(b1)圖(b)紅色區域放大圖

    Figure  4.  Cross-sectional TEM images: (a) pure ZnO; (b) (In Co)?ZnO (atomic ratio of In is 3.4%); (a1) the magnified images from the portions marked with red dotted squares of Fig.4(a); (b1) the magnified images from the portions marked with red dotted squares of Fig.4(b)

    圖  5  (In, Co)?ZnO薄膜電學性質隨In原子數分數的變化。(a)載流子遷移率與載流子濃度的變化;(b)薄膜導電率的變化

    Figure  5.  Electrical properties of (In, Co)?ZnO films with various In contents: (a) the variation of the carrier mobility and carrier concentration; (b) the variation of the film’s conductivity

    圖  6  (In, Co)?ZnO薄膜磁化強度隨In原子數分數的變化

    Figure  6.  Magnetic properties of (In, Co)?ZnO films with various In atomic ratio

    圖  7  (In, Co)?ZnO薄膜飽和磁化強度(Ms)與載流子含量的關系

    Figure  7.  Relationship between saturation magnetization (Ms) and carrier concentration of (In, Co)?ZnO films

    表  1  Co?ZnO和(In, Co)?ZnO薄膜的沉積參數

    Table  1.   Sputtering parameters maintained during the deposition of Co-ZnO and (In, Co)-ZnO thin films

    Background
    pressure/Pa
    Working
    pressure/Pa
    Working
    gas
    Hot
    substrate/K
    Film
    thickness/nm
    SubstrateDraw
    distance/cm
    Sputtering
    power/W
    ZnOCoIn2O3
    < 6.7 × 10?41.67Ar373100Glass108015→100→25
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronic: a spin-based electronics vision for the future. Science, 2001, 294(5546): 1488 doi: 10.1126/science.1065389
    [2] Jindal S, Sharma P. Optical and magnetic properties of Dy3+ doped CdS dilute magnetic semiconductor nanoparticles. Mater Sci Semicond Process, 2020, 108: 104884 doi: 10.1016/j.mssp.2019.104884
    [3] Li Y, Li J M, Yu Z R, et al. Study on the high magnetic field processed ZnO based diluted magnetic semiconductors. Ceram Int, 2019, 45(16): 19583 doi: 10.1016/j.ceramint.2019.07.011
    [4] Ohno H. Marking nonmagnetic semiconductors ferromagnetic. Science, 1998, 281(5379): 951 doi: 10.1126/science.281.5379.951
    [5] Jeon H C, Li M K, Lee S J, et al. The distinct behavior of specific heat of diluted magnetic semiconductor (Ga, Mn)As quantum wells. Curr Appl Phys, 2015, 15(Suppl 2): S26
    [6] Li H B, Qiao Y F, Li J, et al. A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles. Biosens Bioelectron, 2016, 77: 378 doi: 10.1016/j.bios.2015.09.066
    [7] Chen W B, Liu X C, Zhuo S Y, et al. Influence of proton irradiation on defect and magnetism of Yb-doped ZnO dluted magnetic semiconductor thin films. J Inorg Mater, 2018, 33(8): 903 doi: 10.15541/jim20170420

    陳衛賓, 劉學超, 卓世異, 等. 質子輻照對Yb摻雜ZnO稀磁半導體薄膜缺陷與磁性的影響. 無機材料學報, 2018, 33(8):903 doi: 10.15541/jim20170420
    [8] Al-Zahrani J H, El-Hagary M, El-Taher A. Gamma irradiation induced effects on optical properties and single oscillator parameters of Fe-doped CdS diluted magnetic semiconductors thin films. Mater Sci Semicond Process, 2015, 39: 74 doi: 10.1016/j.mssp.2015.04.042
    [9] Zutic I, Fabian J, Das Sarma S. Spintronics: fundamentals and applications. Rev Mod Phys, 2004, 76: 323 doi: 10.1103/RevModPhys.76.323
    [10] Robkhob P, Tang I M, Thongmee S. Magnetic properties of the dilute magnetic semiconductor Zn1?xCoxO nanoparticles. J Supercond Novel Magn, 2019, 32: 3637 doi: 10.1007/s10948-019-5135-z
    [11] Obeid M M, Jappor H R, Al-Marzoki K, et al. Unraveling the effect of Gd doping on the structural, optical, and magnetic properties of ZnO based diluted magnetic semiconductor nanorods. RSC Adv, 2019, 9(57): 33207 doi: 10.1039/C9RA04750F
    [12] Zhong M, Wang S W, Li Y, et al. Room temperature ferromagnetic Cr-Ni codoped ZnO diluted magnetic semiconductors synthesized by hydrothermal method under high pulsed magnetic field. Ceram Int, 2015, 41(1): 451 doi: 10.1016/j.ceramint.2014.08.091
    [13] Wang X T, Zhu L P, Ye Z G, et al. Influence of N dopant on the electric and magnetic properties of Co doped ZnO thin films. J Inorg Mater, 2010, 25(7): 711 doi: 10.3724/SP.J.1077.2010.00711

    王雪濤, 朱麗萍, 葉志高, 等. N摻雜對Co?ZnO薄膜電學和磁學性能的影響. 無機材料學報, 2010, 25(7):711 doi: 10.3724/SP.J.1077.2010.00711
    [14] Liu Z H, Wang X L, Ji J Z, et al. Influence of photoelectric parameters for AZO transparent conductive films on electromagnetic scattering characteristics. Chin J Eng, 2018, 40(10): 1259

    劉戰合, 王曉璐, 姬金祖, 等. AZO透明導電膜電磁散射光電參數影響試驗. 工程科學學報, 2018, 40(10):1259
    [15] Zang Z G. Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films. Appl Phys Lett, 2018, 112(4): 042106 doi: 10.1063/1.5017002
    [16] Li C L, Zang Z G, Han C, et al. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy, 2017, 40: 195 doi: 10.1016/j.nanoen.2017.08.013
    [17] Sluiter M H F, Kawazoe Y, Sharma P, et al. First principles based design and experimental evidence for a ZnO-based ferromagnet at room temperature. Phys Rev Lett, 2005, 94(18): 187204 doi: 10.1103/PhysRevLett.94.187204
    [18] Zong Y, Sun Y, Meng S Y, et al. Doping effect and oxygen defects boost room temperature ferromagnetism of Co-doped ZnO nanoparticles: experimental and theoretical studies. RSC Adv, 2019, 9(40): 23012 doi: 10.1039/C9RA03620B
    [19] Dinia A, Schmerber G, Meny C, et al. Room-temperature ferromagnetism in Zn1?xCoxO magnetic semiconductors prepared by sputtering. J Appl Phys, 2005, 97(12): 123908 doi: 10.1063/1.1937478
    [20] Shatnawi M, Alsmadi A M, Bsoul I, et al. Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. J Alloys Compd, 2016, 655: 244 doi: 10.1016/j.jallcom.2015.09.166
    [21] Siddheswaran R, Mangalaraja R V, Gomez M E, et al. Room temperature ferromagnetism in combustion synthesized nanocrystalline Co, Al co-doped ZnO. J Alloys Compd, 2013, 581: 146 doi: 10.1016/j.jallcom.2013.06.117
    [22] Kumar S, Tripathi D M, Vaibhav P, et al. Effect of Al and Fe doping in ZnO on magnetic and magneto-transport properties. J Magn Magn Mater, 2016, 419: 68 doi: 10.1016/j.jmmm.2016.06.007
    [23] Paul S, Dalal B, Das M, et al. Enhanced magnetic properties of In-Mn-codoped plasmonic ZnO nanoflowers: evidence of delocalized charge carrier-mediated ferromagnetic coupling. Chem Mater, 2019, 31(19): 8191 doi: 10.1021/acs.chemmater.9b03059
    [24] Wang X T, Zhu L P, Zhang L Q, et al. Properties of Ni doped and Ni-Ga co-doped ZnO thin films prepared by pulsed laser deposition. J Alloys Compd, 2011, 509(7): 3282 doi: 10.1016/j.jallcom.2010.10.049
    [25] Liu Q Y, Yang P. First-principles study on ZnO-based diluted magnetic semiconductors in different doping configurations. Electron Sci Technol, 2018, 31(2): 44

    劉喬亞, 楊平. 不同構型下ZnO基稀磁半導體的第一性原理研究. 電子科技, 2018, 31(2):44
    [26] Luthra A V. Tweaking electrical and magnetic properties of Al-Ni co-doped ZnO nanopowders. Ceram Int, 2014, 40(9): 14927 doi: 10.1016/j.ceramint.2014.06.089
    [27] Henni A, Merrouche A, Telli L, et al. Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition. J Electroanal Chem, 2016, 763: 149 doi: 10.1016/j.jelechem.2015.12.037
    [28] Yoo R, Cho S, Song M J, et al. Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethyl methylphosphonate as a chemical warfare agent simulant. Sens Actuators B, 2015, 221: 217 doi: 10.1016/j.snb.2015.06.076
    [29] Sun H, Chen S C, Wang C H, et al. Electrical and magnetic properties of (Al, Co) co-doped ZnO films deposited by RF magnetron sputtering. Surf Coat Technol, 2019, 359: 390 doi: 10.1016/j.surfcoat.2018.10.105
    [30] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst, 1976, 32: 751 doi: 10.1107/S0567739476001551
    [31] Lu Z L, Hsu H S, Tzeng Y H, et al. Tunable magnetic and transport properties of single crystalline (Co, Ga)-codoped ZnO films. Appl Phys Lett, 2009, 95(6): 062509 doi: 10.1063/1.3204016
    [32] Chen S C, Wang C H, Sun H, et al. Microstructure, electrical and magnetic properties of (Ga, Co)?ZnO films by radio frequency magnetron co-sputtering. Surf Coat Technol, 2016, 303: 203 doi: 10.1016/j.surfcoat.2016.03.064
    [33] Coey J M D, Venkatesan M, Fitzgerald C B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater, 2005, 4: 173 doi: 10.1038/nmat1310
    [34] Dietl T, Ohno H, Matsukura F, et at. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287(5455): 1019 doi: 10.1126/science.287.5455.1019
    [35] Griffin K A, Pakhomov A B, Wang C M, et al. Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2. Phys Rev Lett, 2005, 94(15): 157204 doi: 10.1103/PhysRevLett.94.157204
    [36] Behan A J, Mokhtari A, Blythe H J, et al. Two magnetic regimes in doped ZnO corresponding to a dilute magnetic semiconductor and a dilute magnetic insulator. Phys Rev Lett, 2008, 100(4): 047206 doi: 10.1103/PhysRevLett.100.047206
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數:  1973
  • HTML全文瀏覽量:  1005
  • PDF下載量:  80
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-01-11
  • 刊出日期:  2021-03-26

目錄

    /

    返回文章
    返回