<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

金屬有機骨架(MOFs)/纖維材料用于電阻式氣體傳感器的研究進展

翟振宇 張秀玲 李從舉

翟振宇, 張秀玲, 李從舉. 金屬有機骨架(MOFs)/纖維材料用于電阻式氣體傳感器的研究進展[J]. 工程科學學報, 2020, 42(9): 1096-1105. doi: 10.13374/j.issn2095-9389.2019.12.16.006
引用本文: 翟振宇, 張秀玲, 李從舉. 金屬有機骨架(MOFs)/纖維材料用于電阻式氣體傳感器的研究進展[J]. 工程科學學報, 2020, 42(9): 1096-1105. doi: 10.13374/j.issn2095-9389.2019.12.16.006
ZHAI Zhen-yu, ZHANG Xiu-ling, LI Cong-ju. Research progress on MOFs/fiber materials for resistive gas sensors[J]. Chinese Journal of Engineering, 2020, 42(9): 1096-1105. doi: 10.13374/j.issn2095-9389.2019.12.16.006
Citation: ZHAI Zhen-yu, ZHANG Xiu-ling, LI Cong-ju. Research progress on MOFs/fiber materials for resistive gas sensors[J]. Chinese Journal of Engineering, 2020, 42(9): 1096-1105. doi: 10.13374/j.issn2095-9389.2019.12.16.006

金屬有機骨架(MOFs)/纖維材料用于電阻式氣體傳感器的研究進展

doi: 10.13374/j.issn2095-9389.2019.12.16.006
基金項目: 國家自然科學基金資助項目(51973015,21274006,51073005);中央高校基本科研業務費專項資金資助項目(06500100);國民核生化災害防護國家重點實驗室基金資助項目(SKLNBC2018-15)
詳細信息
    通訊作者:

    E-mail:congjuli@126.com

  • 中圖分類號: TG142.71

Research progress on MOFs/fiber materials for resistive gas sensors

More Information
  • 摘要: 總結了將MOFs材料與金屬氧化物、紡織品以及碳基導電纖維材料相結合,并在電阻式氣體傳感器領域的研究與應用。其中金屬氧化物結合MOFs過程中,MOFs主要有兩個作用:一是作為分散劑提高金屬氧化物的分散性;二是利用MOFs本身具有較大的比表面積和大量的活性位點,來提高材料對于氣體分子的吸附量和選擇性。當紡織品與MOFs結合的過程中,由于紡織品的導電性相對較差,所以需要結合一些導電性及氣體選擇性較好的MOFs來作為傳感器。碳基導電纖維一般具有較好的機械性能和導電性能,因此將其與MOFs材料復合后用于柔性電阻氣體傳感器具有一定的優勢。

     

  • 圖  1  (a)SnO2傳感器的制備流程圖,插圖為煅燒前后的掃描電子顯微鏡圖像對比;(b)比較未負載和負載30% Pd–SnO2對于H2的響應值;(c) PdO@ZnO?WO2纖維的合成工藝圖;(d) 350 ℃時PdO@ZnO?WO2對甲苯的傳感性能[8, 12]

    Figure  1.  (a) Schematic diagram illustrating the fabrication process of our SnO2 sensor prototypes, the inset shows images of the materials in the as-spun state and after hot-pressing and calcination obtained by confocal microscopy; (b) electrical responses of unloaded and 30% Pd-loaded SnO2 sensors to H2; (c) schematic illustration of the synthetic process of PdO@ZnO?WO2 nanoparticles; (d) sensitivity of PdO@ZnO?WO2 nanoparticles to toluene at 350 ℃[8, 12]

    圖  2  (a) PdO@ZnO–SnO2納米纖維合成工藝示意圖;(b) 400 ℃下不同材料對0.1×10?6~5×10?6體積分數丙酮的響應值;(c) Pd@ZnO–WO3納米纖維的掃描電鏡圖像,插圖為表面放大圖像;(d) PdO@ZnO-SnO2的掃描電鏡圖像[13]

    Figure  2.  (a) Schematic illustration of the synthetic process of PdO@ZnO-SnO2 nanoparticles; (b) Transition of dynamic responses to acetone in the volume fraction range of 0.1×10?6?5.0×10?6 at 400 ℃; (c) SEM images of Pd@ZnO–WO3 nanofibers and magnified image of the material surface; (d) SEM image of PdO@ZnO–SnO2 nanotubes[13]

    圖  3  ZnO和ZIF-8/ZnO的傳感原理圖[14]

    Figure  3.  Schematic illustration of the raw ZnO and ZIF-8/ZnO nanorod sensors[14]

    圖  4  (a) Pd@ZnO–WO3納米纖維在350 ℃下對于不同氣體的選擇性;(b) PdO@ZnO–SnO2納米纖維在400 ℃下對于不同氣體的選擇性;(c) ZnO和ZIF-8/ZnO對于不同氣體的選擇性[12-14]

    Figure  4.  (a) Selective detection characteristics of Pd@ZnO-WO3 nanofibers toward toluene in the presence of multiple interfering analytes at 350 °C; (b) selective sensing characteristics of PdO@ZnO–SnO2 nanoparticles at 400 ℃; (c) selective of ZnO and ZIF-8/ZnO for different gases[12-14]

    圖  5  (a) ZnO@ZIF–CoZn氣體傳感器的制備原理圖;(b) ZnO and ZnO@ ZIF–CoZn的平面圖和截面圖;(c) ZnO@5 nm ZIF–CoZn對不同體積分數丙酮的響應值,并且在10×10?6體積分數下測試對于不同濕度的響應值[4]

    Figure  5.  (a) Schematic illustration of the preparation of ZnO@ZIF–CoZn gas sensors; (b) plan and cross-sectional views of ZnO and ZnO@ ZIF–CoZn nanowire arrays: (1,3) HRTEM image of pure ZnO and SAED patterns of a single ZnO nanowire (in inset), (2,4) ZnO@15 nm ZIF–CoZn;(c) response–recovery curves of ZnO@5 nm ZIF–CoZn toward acetone of different volume fraction in dry air and 10×10?6 acetone at different relative humidities[4]

    圖  6  (a)通過噴墨印刷技術,將HKUST-1合成在柔性基材上;(b) HKUST-1暴露在不同氣體前后的對比照片;(c) HKUST-1的掃描電鏡圖像;(d) HKUST-1對于NH3的傳感響應曲線[24]

    Figure  6.  (a) Inkjet printing of SURMOFs onto flexible substrates using a HKUST-1 precursor solution as “ink”; (b) photographs of a dot of HKUST-1 printed onto textiles before and after exposure to different gases; (c) SEM images of a HKUST-1 printed paper fiber; (d) partial reversible adsorption/desorption of NH3 on HKUST-1 film[24]

    圖  7  (a)傳感器的制備示意圖;(b)傳感器材料在不同放大倍數下的掃描電子顯微鏡圖像[25]

    Figure  7.  (a) Schematic diagram of sensor preparation; (b) SEM image analysis of sensor material under different magnification[25]

    圖  8  (a)校準曲線在體積分數范圍為(10~500)×10?6時用于分析物(甲醇,乙醇和異丙醇)的傳感器;(b)MIL-53(Cr-Fe)/Ag/CNT三元納米復合材料的傳感機理[29]

    Figure  8.  (a) Calibration curves of the sensors for different analytes (methanol, ethanol, and iso-propanol) in the volume fraction range of (10–500)×10?6; (b) sensing mechanism of the MIL-53(Cr-Fe)/Ag/CNT ternary nanocomposite[29]

    圖  9  (a)傳感器示意圖;0 V (22 ℃)(b),0.7 V (36 ℃) (c)和2.1 V (100 ℃) (d)下傳感器的響應和恢復動力學曲線[30]

    Figure  9.  (a) Schematic illustrations of the overall sensing platform; response and recovery kinetics of SWCNT-loaded PdO–Co3O4 HNCs on cPI film toward the Ni/Au-cPI heater at 0 V (22 °C) (b), 0.7 V (36 °C) (c), and 2.1 V (100 °C) (d)[30]

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Zhao J J, Losego M D, Lemaire P C, et al. Highly adsorptive, MOF-functionalized nonwoven fiber mats for hazardous gas capture enabled by atomic layer deposition. <italic>Adv Mater Interfaces</italic>, 2014, 1(4): 1400040 doi: 10.1002/admi.201400040
    [2] Koo W T, Jang J S, Kim I D. Metal-organic frameworks for chemiresistive sensors. <italic>Chem</italic>, 2019, 5(8): 1938 doi: 10.1016/j.chempr.2019.04.013
    [3] Alrammouz R, Podlecki J, Abboud P, et al. A review on flexible gas sensors: from materials to devices. <italic>Sensors Actuat A-Phys</italic>, 2018, 284: 209 doi: 10.1016/j.sna.2018.10.036
    [4] Yao M S, Tang W X, Wang G E, et al. MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. <italic>Adv Mater</italic>, 2016, 28(26): 5229 doi: 10.1002/adma.201506457
    [5] Zhan S, Li D M, Liang S F, et al. A novel flexible room temperature ethanol gas sensor based on SnO<sub>2</sub> doped poly-diallyldimethylammonium chloride. <italic>Sensors</italic>, 2013, 13(4): 4378 doi: 10.3390/s130404378
    [6] Tonezzer M, Lacerda R G. Zinc oxide nanowires on carbon microfiber as flexible gas sensor. <italic>Physica E</italic>, 2012, 44(6): 1098 doi: 10.1016/j.physe.2010.11.029
    [7] Lin J, Liang F, Lu X Y, et al. Modeling and designing fault-tolerance mechanisms for MPI-based mapreduce data computing framework // 2015 IEEE First International Conference on Big Data Computing Service and Applications. Redwood City, 2015: 176
    [8] Yang D J, Kamienchick I, Youn D Y, et al. Ultrasensitive and highly selective gas sensors based on electrospun SnO<sub>2</sub> nanofibers modified by Pd loading. <italic>Adv Funct Mater</italic>, 2010, 20(24): 4258 doi: 10.1002/adfm.201001251
    [9] Zhang X L, Fan W, Li H, et al. Extending cycling life of lithium–oxygen batteries based on novel catalytic nanofiber membrane and controllable screen-printed method. <italic>J Mater Chem A</italic>, 2018, 6(43): 21458 doi: 10.1039/C8TA07884J
    [10] Zhang X L, Fan W, Zhao S Y, et al. An efficient, bifunctional catalyst for lithium–oxygen batteries obtained through tuning the exterior Co<sup>2+</sup>/Co<sup>3+</sup> ratio of CoO<sub><italic>x</italic></sub> on N-doped carbon nanofibers. <italic>Catal Sci Technol</italic>, 2019, 9(8): 1998 doi: 10.1039/C9CY00477G
    [11] Yang W, Li N W, Zhao S Y, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins. <italic>Adv Mater Technol</italic>, 2018, 3(2): 1700241 doi: 10.1002/admt.201700241
    [12] Koo W T, Choi S J, Kim S J, et al. Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on oxide nanofiber scaffold toward superior gas sensors. <italic>J Am Chem Soc</italic>, 2016, 138(40): 13431 doi: 10.1021/jacs.6b09167
    [13] Koo W T, Jang J S, Choi S J, et al. Metal-organic framework templated catalysts: dual sensitization of PdO–ZnO composite on hollow SnO<sub>2</sub> nanotubes for selective acetone sensors. <italic>ACS Appl Mater Interfaces</italic>, 2017, 9(21): 18069 doi: 10.1021/acsami.7b04657
    [14] Wu X N, Xiong S S, Gong Y, et al. MOF–SMO hybrids as a H<sub>2</sub>S sensor with superior sensitivity and selectivity. <italic>Sensors Actuat B</italic>:<italic>Chem</italic>, 2019, 292: 32 doi: 10.1016/j.snb.2019.04.076
    [15] Talin A A, Centrone A, Ford A C, et al. Tunable electrical conductivity in metal-organic framework thin film devices. <italic>Science</italic>, 2014, 343(6166): 66 doi: 10.1126/science.1246738
    [16] Shi J D, Liu S, Zhang L S, et al. Smart textile-integrated microelectronic systems for wearable applications. <italic>Adv Mater</italic>, 2020, 32(5): 1901958 doi: 10.1002/adma.201901958
    [17] Zhang Y Y, Yuan S, Feng X, et al. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control. <italic>J Am Chem Soc</italic>, 2016, 138(18): 5785 doi: 10.1021/jacs.6b02553
    [18] Bradshaw D, Garai A, Huo J. Metal-organic framework growth at functional interfaces: thin films and composites for diverse applications. <italic>Chem Soc Rev</italic>, 2012, 41(6): 2344 doi: 10.1039/C1CS15276A
    [19] Denny Jr M S, Moreton J C, Benz L, et al. Metal–organic frameworks for membrane-based separations. <italic>Nat Rev Mater</italic>, 2016, 1(12): 16078 doi: 10.1038/natrevmats.2016.78
    [20] López-Maya E, Montoro C, Rodríguez-Albelo L M, et al. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents. <italic>Angew Chem Int Ed</italic>, 2015, 54(23): 6790 doi: 10.1002/anie.201502094
    [21] Liu J X, W?ll C. Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. <italic>Chem Soc Rev</italic>, 2017, 46(19): 5730 doi: 10.1039/C7CS00315C
    [22] Li M Y, Dinc? M. Reductive electrosynthesis of crystalline metal-organic frameworks. <italic>J Am Chem Soc</italic>, 2011, 133(33): 12926 doi: 10.1021/ja2041546
    [23] Ozer R R, Hinestroza J P. One-step growth of isoreticular luminescent metal–organic frameworks on cotton fibers. <italic>RSC Adv</italic>, 2015, 5(25): 19400 doi: 10.1039/C5RA90014J
    [24] Zhang J L, Ar D, Yu X J, et al. Patterned deposition of metal-organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution. <italic>Adv Mater</italic>, 2013, 25(33): 4631 doi: 10.1002/adma.201301626
    [25] Smith M K, Mirica K A. Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases. <italic>J Am Chem Soc</italic>, 2017, 139(46): 16759 doi: 10.1021/jacs.7b08840
    [26] Hmadeh M, Lu Z, Liu Z, et al. New porous crystals of extended metal-catecholates. <italic>Chem Mater</italic>, 2012, 24(18): 3511 doi: 10.1021/cm301194a
    [27] Sheberla D, Sun L, Blood-Forsythe M A, et al. High electrical conductivity in Ni-3(2, 3, 6, 7, 10, 11-hexaiminotriphenyl-ene)(2), a semiconducting metal-organic graphene analogue. <italic>J Am Chem Soc</italic>, 2014, 136(25): 8859 doi: 10.1021/ja502765n
    [28] Rui K, Wang X S, Du M, et al. Dual-function metal–organic framework-based wearable fibers for gas probing and energy storage. <italic>ACS Appl Mater Interfaces</italic>, 2018, 10(3): 2837 doi: 10.1021/acsami.7b16761
    [29] Ghanbarian M, Zeinali S, Mostafavi A. A novel MIL-53(Cr-Fe)/Ag/CNT nanocomposite based resistive sensor for sensing of volatile organic compounds. <italic>Sensors Actuat B-Chem</italic>, 2018, 267: 381 doi: 10.1016/j.snb.2018.02.138
    [30] Choi S J, Choi H J, Koo W T, et al. Metal-organic framework-templated PdO-Co<sub>3</sub>O<sub>4</sub> nanocubes functionalized by SWCNTs: improved NO<sub>2</sub> reaction kinetics on flexible heating film. <italic>ACS Appl Mater Interfaces</italic>, 2017, 9(46): 40593 doi: 10.1021/acsami.7b11317
  • 加載中
圖(9)
計量
  • 文章訪問數:  2708
  • HTML全文瀏覽量:  1279
  • PDF下載量:  142
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-12-16
  • 刊出日期:  2020-09-20

目錄

    /

    返回文章
    返回