<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

含端部裂隙大理巖單軸壓縮破壞及能量耗散特性

韓震宇 李地元 朱泉企 劉濛 李夕兵

韓震宇, 李地元, 朱泉企, 劉濛, 李夕兵. 含端部裂隙大理巖單軸壓縮破壞及能量耗散特性[J]. 工程科學學報, 2020, 42(12): 1588-1596. doi: 10.13374/j.issn2095-9389.2019.12.07.001
引用本文: 韓震宇, 李地元, 朱泉企, 劉濛, 李夕兵. 含端部裂隙大理巖單軸壓縮破壞及能量耗散特性[J]. 工程科學學報, 2020, 42(12): 1588-1596. doi: 10.13374/j.issn2095-9389.2019.12.07.001
HAN Zhen-yu, LI Di-yuan, ZHU Quan-qi, LIU Meng, LI Xi-bing. Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface[J]. Chinese Journal of Engineering, 2020, 42(12): 1588-1596. doi: 10.13374/j.issn2095-9389.2019.12.07.001
Citation: HAN Zhen-yu, LI Di-yuan, ZHU Quan-qi, LIU Meng, LI Xi-bing. Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface[J]. Chinese Journal of Engineering, 2020, 42(12): 1588-1596. doi: 10.13374/j.issn2095-9389.2019.12.07.001

含端部裂隙大理巖單軸壓縮破壞及能量耗散特性

doi: 10.13374/j.issn2095-9389.2019.12.07.001
基金項目: 國家自然科學基金資助項目(52074349);湖南省杰出青年科學基金資助項目(2019JJ20028);中南大學創新驅動計劃資助項目(2018CX020)
詳細信息
    通訊作者:

    E-mail:diyuan.li@csu.edu.cn

  • 中圖分類號: TU 45

Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface

More Information
  • 摘要: 對含端部雙裂隙?50 mm×50 mm的圓柱體大理巖試樣進行單軸壓縮試驗,并利用高速攝影儀實時記錄試樣破壞過程,研究了端部裂隙長度和傾角對大理巖力學特性及裂紋擴展規律的影響。研究表明,當裂隙長度達到門檻值前,試樣的單軸抗壓強度的弱化程度較低,彈性模量、峰值應變的變化較小。相對垂直裂隙,相同長度的傾斜裂隙對大理巖的影響更加顯著。試驗結果與理論分析均表明,裂紋一般不從端部垂直裂隙尖端起裂,試樣的起裂裂紋大多發展為主裂紋,擴展過程中較少產生分支與分叉,試樣表面會產生局部剝落,傾斜裂隙試樣宏觀上呈剪切或拉剪復合破壞,垂直裂隙試樣呈劈裂拉伸破壞。試樣能耗參數與單軸抗壓強度的變化趨勢一致,試樣總應變能和其單軸抗壓強度有較好的正相關關系。最后,比較了動、靜載荷作用下含端部裂隙大理巖力學響應與裂紋擴展過程的差異。

     

  • 圖  1  含雙裂隙大理巖試樣示意圖

    Figure  1.  Sketch of marble specimens containing two flaws at the end surfaces

    圖  2  試驗設備

    Figure  2.  Experimental facilities

    圖  3  單軸壓縮下標準試樣的應力–應變曲線

    Figure  3.  Stress?strain curve of standard marble specimens under uniaxial compression

    圖  4  單軸壓縮下含裂隙試樣的應力–應變曲線。(a)不同裂隙長度;(b)不同裂隙傾角

    Figure  4.  Stress?strain curves of flawed marble specimens under uniaxial compression: (a) different flaw lengths; (b) different flaw angles

    圖  5  單軸壓縮下含裂隙試樣的裂紋擴展過程。(a)完整試樣;(b) 5 mm, 90°;(c)10 mm,90°;(d)15 mm,90°;(e)15 mm,30°;(f)15 mm, 60°

    Figure  5.  Crack propagation of flawed specimens under uniaxial compression: (a) intact; (b) 5 mm, 90°; (c) 10 mm, 90°; (d) 15 mm, 90°; (e) 15 mm, 30°; (f) 15 mm, 60°

    圖  6  垂直裂隙受力示意圖

    Figure  6.  Diagram of vertical flaws under uniaxial compression

    圖  7  能量耗散與裂隙參數的關系。(a)不同裂隙長度;(b)不同裂隙傾角

    Figure  7.  Relationship between energy parameters and flaw geometries: (a) different flaw lengths; (b) different flaw angles

    圖  8  輸入能和單軸抗壓強度的關系。(a)不同裂隙長度;(b)不同裂隙傾角

    Figure  8.  Relationship between input energy and uniaxial compressive strength: (a) different flaw lengths; (b) different flaw angles

    圖  9  能量利用率與裂隙參數的關系。(a)不同裂隙長度;(b)不同裂隙傾角

    Figure  9.  Relationship between energy efficiency and flaw geometries: (a) different flaw lengths; (b) different flaw angles

    表  1  動、靜態加載下含裂隙大理巖的力學參數均值[3]

    Table  1.   Mechanical parameters of flawed marble specimens under dynamic and static loads

    Loading typeSpecimenPeak strength/
    MPa
    Elastic modulus/
    GPa
    Peak strain/
    10?2
    Static uniaxial compressionIntact133.405.941.95
    SM–5–90109.295.871.83
    SM–10–90123.275.422.01
    SM–15–3091.825.931.41
    SM–15–60105.045.761.55
    SM–15–90122.365.881.84
    Dynamic loadingDM–15–3097.032.80.40
    DM–15–60129.032.80.52
    DM–15–90204.045.70.46
    Note:S represents the static uniaxial compression test,D represents the dynamic unconfined compression test,M represents marble,5/10/15 is the flaw length,and 30/60/90 is the flaw angle.
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Zou C J, Wong L N Y, Loo J J, et al. Different mechanical and cracking behaviors of single-flawed brittle gypsum specimens under dynamic and quasi-static loadings. Eng Geol, 2016, 201: 71 doi: 10.1016/j.enggeo.2015.12.014
    [2] Li D Y, Han Z Y, Sun X L, et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests. Rock Mech Rock Eng, 2019, 52(6): 1623 doi: 10.1007/s00603-018-1652-5
    [3] Li D Y, Han Z Y, Sun X L, et al. Characteristics of dynamic failure of marble with artificial flaws under split Hopkinson pressure bar tests. Chin J Rock Mech Eng, 2017, 36(12): 2872

    李地元, 韓震宇, 孫小磊, 等. 含預制裂隙大理巖SHPB動態力學破壞特性試驗研究. 巖石力學與工程學報, 2017, 36(12):2872
    [4] Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci, 1998, 35(7): 863 doi: 10.1016/S0148-9062(98)00005-9
    [5] Yang S Q, Dai Y H, Han L J, et al. Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression. Eng Fract Mech, 2009, 76(12): 1833 doi: 10.1016/j.engfracmech.2009.04.005
    [6] Yang S Q. Study of strength failure and crack coalescence behavior of sandstone containing three pre-existing fissures. Rock Soil Mech, 2013, 34(1): 31

    楊圣奇. 斷續三裂隙砂巖強度破壞和裂紋擴展特征研究. 巖土力學, 2013, 34(1):31
    [7] Yang S Q, Huang Y H. Failure behaviour of rock-like materials containing two pre-existing unparallel flaws: an insight from particle flow modeling. Eur J Environ Civil Eng, 2018, 22(Suppl 1): s57
    [8] Huang Y H, Yang S Q, Zeng W. Experimental and numerical study on loading rate effects of rock-like material specimens containing two unparallel fissures. J Cent South Univ, 2016, 23(6): 1474 doi: 10.1007/s11771-016-3200-3
    [9] Liu Y, Dai F, Dong L, et al. Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters. Rock Mech Rock Eng, 2018, 51(1): 47 doi: 10.1007/s00603-017-1327-7
    [10] Liu Y, Dai F, Zhao T, et al. Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression. Rock Mech Rock Eng, 2017, 50(1): 89 doi: 10.1007/s00603-016-1085-y
    [11] Liu Y, Dai F, Fan P X, et al. Experimental investigation of the influence of joint geometric configurations on the mechanical properties of intermittent jointed rock models under cyclic uniaxial compression. Rock Mech Rock Eng, 2017, 50(6): 1453 doi: 10.1007/s00603-017-1190-6
    [12] Li J C, Ma G W, Huang X. Analysis of wave propagation through a filled rock joint. Rock Mech Rock Eng, 2010, 43(6): 789 doi: 10.1007/s00603-009-0033-5
    [13] Li J C, Ma G W, Zhao J. An equivalent viscoelastic model for rock mass with parallel joints. J Geophys Res Solid Earth, 2010, 115(B3): B03305
    [14] Li J C, Ma G W, Zhao J. Analysis of stochastic seismic wave interaction with a slippery rock fault. Rock Mech Rock Eng, 2011, 44(1): 85 doi: 10.1007/s00603-010-0109-2
    [15] Li J C, Li H B, Ma G W, et al. A time-domain recursive method to analyse transient wave propagation across rock joints. Geophys J Int, 2012, 188(2): 631 doi: 10.1111/j.1365-246X.2011.05286.x
    [16] Zhao J, Cai J G. Transmission of elastic P-waves across single fractures with a nonlinear normal deformational behavior. Rock Mech Rock Eng, 2001, 34(1): 3 doi: 10.1007/s006030170023
    [17] Zhao J, Zhao X B, Cai J G. A further study of P-wave attenuation across parallel fractures with linear deformational behaviour. Int J Rock Mech Min Sci, 2006, 43(5): 776 doi: 10.1016/j.ijrmms.2005.12.007
    [18] Yang S Q, Liu X R, Li Y S. Experimental analysis of mechanical behavior of sandstone containing hole and fissure under uniaxial compression. Chin J Rock Mech Eng, 2012, 31(Suppl 2): 3539

    楊圣奇, 劉相如, 李玉壽. 單軸壓縮下含孔洞裂隙砂巖力學特性試驗分析. 巖石力學與工程學報, 2012, 31(增刊2): 3539
    [19] Yang S Q, Su C D, Xu W Y. Experimental and theoretical study of size effect of rock material. Eng Mech, 2005, 22(4): 112 doi: 10.3969/j.issn.1000-4750.2005.04.022

    楊圣奇, 蘇承東, 徐衛亞. 巖石材料尺寸效應的試驗和理論研究. 工程力學, 2005, 22(4):112 doi: 10.3969/j.issn.1000-4750.2005.04.022
    [20] Liu B C, Zhang J S, Du Q Z, et al. A study of size effect for compression strength of rock. Chin J Rock Mech Eng, 1998, 17(6): 611 doi: 10.3321/j.issn:1000-6915.1998.06.001

    劉寶琛, 張家生, 杜奇中, 等. 巖石抗壓強度的尺寸效應. 巖石力學與工程學報, 1998, 17(6):611 doi: 10.3321/j.issn:1000-6915.1998.06.001
    [21] Jing H W, Su H J, Yang D L, et al. Study of strength degradation law of damaged rock sample and its size effect. Chin J Rock Mech Eng, 2012, 31(3): 543 doi: 10.3969/j.issn.1000-6915.2012.03.012

    靖洪文, 蘇海健, 楊大林, 等. 損傷巖樣強度衰減規律及其尺寸效應研究. 巖石力學與工程學報, 2012, 31(3):543 doi: 10.3969/j.issn.1000-6915.2012.03.012
    [22] Li D Y, Han Z Y, Zhu Q Q, et al. Stress wave propagation and dynamic behavior of red sandstone with single bonded planar joint at various angles. Int J Rock Mech Min Sci, 2019, 117: 162 doi: 10.1016/j.ijrmms.2019.03.011
    [23] Xie H P, Ju Y, Li LY. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles. Chin J Rock Mech Eng, 2005, 24(17): 3003 doi: 10.3321/j.issn:1000-6915.2005.17.001

    謝和平, 鞠楊, 黎立云. 基于能量耗散與釋放原理的巖石強度與整體破壞準則. 巖石力學與工程學報, 2005, 24(17):3003 doi: 10.3321/j.issn:1000-6915.2005.17.001
    [24] Xie H P, Peng R D, Ju Y, et al. On energy analysis of rock failure. Chin J Rock Mech Eng, 2005, 24(15): 2603 doi: 10.3321/j.issn:1000-6915.2005.15.001

    謝和平, 彭瑞東, 鞠楊, 等. 巖石破壞的能量分析初探. 巖石力學與工程學報, 2005, 24(15):2603 doi: 10.3321/j.issn:1000-6915.2005.15.001
    [25] Xie H P, Peng R D, Ju Y. Energy dissipation of rock deformation and fracture. Chin J Rock Mech Eng, 2004, 23(21): 3565 doi: 10.3321/j.issn:1000-6915.2004.21.001

    謝和平, 彭瑞東, 鞠楊. 巖石變形破壞過程中的能量耗散分析. 巖石力學與工程學報, 2004, 23(21):3565 doi: 10.3321/j.issn:1000-6915.2004.21.001
    [26] Zhang P, Yang C H, Wang H, et al. Stress-strain characteristics and anisotropy energy of shale under uniaxial compression. Rock Soil Mech, 2018, 39(6): 2106

    張萍, 楊春和, 汪虎, 等. 頁巖單軸壓縮應力–應變特征及能量各向異性. 巖土力學, 2018, 39(6):2106
    [27] Li H. Rock Fracture Mechanics. Chongqing: Chongqing University Press, 1988

    李賀. 巖石斷裂力學. 重慶: 重慶大學出版社, 1988
    [28] Chu F J, Liu D W, Tao M, et al. Dynamic damage laws of sandstone under different water bearing conditions based on nuclear magnetic resonance. Chin J Eng, 2018, 40(2): 144

    褚夫蛟, 劉敦文, 陶明, 等. 基于核磁共振的不同含水狀態砂巖動態損傷規律. 工程科學學報, 2018, 40(2):144
    [29] Zhang Q B, Zhao J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min Sci, 2013, 60: 423 doi: 10.1016/j.ijrmms.2013.01.005
    [30] Dai F, Huang S, Xia K W, et al. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng, 2010, 43(6): 65
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  1952
  • HTML全文瀏覽量:  885
  • PDF下載量:  59
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-12-07
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回