<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

轉爐吹煉后期碳含量預報的改進指數模型

林文輝 焦樹強 孫建坤 周凱嘯 劉敏 蘇醒 劉青

林文輝, 焦樹強, 孫建坤, 周凱嘯, 劉敏, 蘇醒, 劉青. 轉爐吹煉后期碳含量預報的改進指數模型[J]. 工程科學學報, 2020, 42(7): 854-861. doi: 10.13374/j.issn2095-9389.2019.11.23.001
引用本文: 林文輝, 焦樹強, 孫建坤, 周凱嘯, 劉敏, 蘇醒, 劉青. 轉爐吹煉后期碳含量預報的改進指數模型[J]. 工程科學學報, 2020, 42(7): 854-861. doi: 10.13374/j.issn2095-9389.2019.11.23.001
LIN Wen-hui, JIAO Shu-qiang, SUN Jian-kun, ZHOU Kai-xiao, LIU Min, SU Xing, LIU Qing. Modified exponential model for carbon prediction in the end blowing stage of basic oxygen furnace converter[J]. Chinese Journal of Engineering, 2020, 42(7): 854-861. doi: 10.13374/j.issn2095-9389.2019.11.23.001
Citation: LIN Wen-hui, JIAO Shu-qiang, SUN Jian-kun, ZHOU Kai-xiao, LIU Min, SU Xing, LIU Qing. Modified exponential model for carbon prediction in the end blowing stage of basic oxygen furnace converter[J]. Chinese Journal of Engineering, 2020, 42(7): 854-861. doi: 10.13374/j.issn2095-9389.2019.11.23.001

轉爐吹煉后期碳含量預報的改進指數模型

doi: 10.13374/j.issn2095-9389.2019.11.23.001
基金項目: 國家自然科學基金資助項目(51974023);江西省重點研發計劃資助項目(20171ACE50020)
詳細信息
    通訊作者:

    E-mail: qliu@ustb.edu.cn

  • 中圖分類號: TF711

Modified exponential model for carbon prediction in the end blowing stage of basic oxygen furnace converter

More Information
  • 摘要: 介紹了幾種主要的轉爐煙氣分析碳含量預報模型,并分析了其中的指數衰減模型及其三種改進算法的基本原理和優缺點。在綜合三種模型優點的基礎上,提出了基于“極限碳含量擬合+曲線同步更新”算法的改進指數模型。首先,利用歷史爐次吹煉后期的脫碳氧效率和碳含量數據,通過指數擬合得到“歷史脫碳曲線”和極限碳含量參數;其次,使用當前爐次吹煉中期的最大脫碳氧效率值對“歷史脫碳曲線”的特征參數進行替換,得到當前爐次吹煉后期的“參考脫碳曲線”,再對其進行歸一化處理,得到歸一化的“參考脫碳曲線”;然后,采用多點校正的方法,計算當前爐次吹煉至各等距離校正點時“參考脫碳曲線”的脫碳量,并根據計算脫碳量與轉爐實際脫碳量的偏差,對熔池碳含量及脫碳曲線參數進行計算與校正,得到“計算脫碳曲線”;最后,通過逐次迭代計算對“參考脫碳曲線”和“計算脫碳曲線”進行同步更新,進而實現對轉爐吹煉后期熔池碳含量的精準預報。研究表明,改進的指數模型具有較高的準確率,終點碳含量預報誤差在±0.02%范圍內的命中率達到90%。

     

  • 圖  1  轉爐吹煉過程典型的煙氣成分變化曲線

    Figure  1.  Typical variation curve of BOF off-gas composition

    圖  2  轉爐吹煉后期典型脫碳曲線

    Figure  2.  Typical decarburization curve in the end-blowing stage of BOF

    圖  3  三種指數衰減模型校正算法示意圖

    Figure  3.  Correction algorithm schematic of three exponential decay models

    圖  4  等距離多點連續校正算法

    Figure  4.  Algorithm of isometric multi-point correction

    圖  5  采用不同C0設定方法得到的歷史脫碳曲線

    Figure  5.  Historical decarburization curves with different C0 values

    圖  6  改進算法的計算脫碳曲線

    Figure  6.  Calculated decarburization curves using the improved algorithm

    圖  7  不同模型預測誤差分布。(a)積分模型;(b)三次方模型;(c)固定C0且曲線不更新的指數模型;(d)固定C0且曲線更新的指數模型;(e)擬合C0且曲線不更新的指數模型;(f)擬合C0且曲線更新的指數模型

    Figure  7.  Prediction error distribution of the different models: (a) integral model; (b) cubic model; (c) exponential model with fixed C0 but without updated curve; (d) exponential model with fixed C0 and updated curve; (e) exponential model with fitted C0 but without updated curve; (f) exponential model with fitted C0 and updated curve

    表  1  “極限碳含量擬合+曲線同步更新”算法改進模型驗證數據

    Table  1.   Validation of proposed model based on improved algorithm %

    Heat No.Predicted end-point carbon contentActual end-point
    carbon content
    Curve updated for 1 timeCurve updated for 2 timesCurve updated for 3 timesCurve updated for n times
    H-10.04630.05190.05380.05580.0609
    H-20.04120.04240.04620.05500.0501
    H-30.04910.05290.05360.05590.0530
    H-40.04500.04870.05100.05560.0591
    H-50.05430.06190.05530.05670.0615
    H-60.05020.04700.06140.05540.0625
    H-70.05890.05710.05400.05630.0612
    H-80.06860.05680.05650.05630.0485
    H-90.04140.04520.05200.05820.0865
    H-100.04340.04470.05050.05520.0673
    下載: 導出CSV

    表  2  幾種模型終點碳含量預測命中率

    Table  2.   Hit ratios of the different models

    ModelHit ratio of end-point carbon prediction/%(ΔC≤±0.02%)Notes
    Integral model72.50Fig.7(a)
    Cubic model85.00Fig.7(b)
    Exponential model85.00Fig.7(c), fixed ${C_0}$, without updated curve
    87.50Fig.7(d), fitted ${C_0}$, without updated curve
    Modified exponential model proposed in current study88.75Fig.7(e), fixed ${C_0}$, with updated curve
    90.00Fig.7(f), fitted ${C_0}$, with updated curve
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Gutte H, Schulz T, Neuhof G, et al. Process control in the oxygen steel production. Acta Metall Sin Engl Lett, 2000, 13(6): 1101
    [2] Li G H, Liu Q. Present status and prospect of BOF steelmaking process control. J Iron Steel Res, 2013, 25(1): 1

    李光輝, 劉青. 轉爐煉鋼過程工藝控制的發展與展望. 鋼鐵研究學報, 2013, 25(1):1
    [3] Klingelhofer H, Schramm R, Lohndorf W, et al. Improving the converter process by use of a sublance. Steel Times, 1994, 222(4): 138
    [4] Apeldoorn G J, Hubbeling P D, Gootjes P. Performance of Danieli Corus sublance systems. Iron Steel, 2004, 39(11): 29 doi: 10.3321/j.issn:0449-749X.2004.11.007

    Apeldoorn G J, Hubbeling P D, Gootjes P. 達涅利康力斯副槍系統的應用. 鋼鐵, 2004, 39(11):29 doi: 10.3321/j.issn:0449-749X.2004.11.007
    [5] Zuo K L, Zou J S, Sun X H, et al. Sub-lance measuration and composition prediction in BOF steelmaking. Steelmaking, 2009, 25(2): 59

    左康林, 鄒俊蘇, 孫曉輝, 等. 轉爐副槍測量與成分預報技術. 煉鋼, 2009, 25(2):59
    [6] Wu M, Li Y J. Practical analysis of dynamic control steelmaking technique of off gas analysis and assistant lance. Iron Steel, 2009, 44(4): 28 doi: 10.3321/j.issn:0449-749X.2009.04.007

    吳明, 李應江. 煙氣分析與副槍動態控制煉鋼技術的實踐分析. 鋼鐵, 2009, 44(4):28 doi: 10.3321/j.issn:0449-749X.2009.04.007
    [7] Fukumi J, Taki C, Hatanaka T, et al. Development of refining control system in combined blowing converter based on exhaust gas information. Tetsu-to-Hagane, 1990, 76(11): 192

    福味純一, 滝千尋, 畑中聡男, 等. 排ガス情報を利用した転爐吹錬の計算機制御技術の開発. 鉄と鋼, 1990, 76(11):192
    [8] Hu Z G, He P, Tan M X, et al. Continuous determination of bath carbon content on 150 t BOF by off-gas analyzer. J Univ Sci Technol Beijing, 2003, 10(6): 22
    [9] Sun S, Liao D S, Pyke N, et al. Development of an offgas/model technology to replace sublance operation for KOBM endpoint carbon control at ArcelorMittal Dofasco. Iron Steel Technol, 2008, 5(11): 36
    [10] Bruckner C, Rodhammer H, Wohlfart K, et al. Implementation of BOF level 2 with DYNACON model and LOMAS offgas analysis at Tangshan ISCO // Proceedings of Asia Steel International Conference (Asia Steel 2012). Beijing, 2012: 130
    [11] Wang X H, Li J Z, Liu F G. Technological progress of BOF steelmaking in period of development mode transition. Steelmaking, 2017, 33(1): 1

    王新華, 李金柱, 劉鳳剛. 轉型發展形勢下的轉爐煉鋼科技進步. 煉鋼, 2017, 33(1):1
    [12] Ceriani A, Aprile G. Dynamic modeling of the BOF for endpoint prediction using EFSOP? technology results and implementation at Riva Taranto // AISTech Proceedings. Pittsburg, 2010: 997
    [13] Liao D S, Sun S, Waterfall S, et al. Integrated KOBM steelmaking process control // Proceeding of the 6th International Congress on the Science and Technology of Steelmaking. Beijing, 2015: 107
    [14] Wang X, Zhou H, Li P. Application of automatic steelmaking system based on LOMAS flue gas analysis in 100 t converter. Hebei Metall, 2018(9): 58

    王肖, 周航, 李朋. 基于LOMAS煙氣分析的自動化煉鋼系統在100 t轉爐的應用. 河北冶金, 2018(9):58
    [15] IRSID. Method and Arrangement for Measuring Continuously the Change of the Carbon Content of a Bath of Molten Metal: French Patent, 1309212. 1962-10-8

    IRSID. Procédé et Dispositif Pour la Mesure Continue de la Teneur en Carbone d'un Bain Métallique en Cours D'affinage: Brevet d'invention fran?ais, 1309212. 1962-10-8
    [16] Dumont-Fillon J, Vayssiere P, Trentini B. Continuous carbon determination in the basic oxygen processes. JOM, 1964, 16(6): 508 doi: 10.1007/BF03378283
    [17] Meyer H W, Dukelow D A, Fischer M M. Static and dynamic control of the basic oxygen process. JOM, 1964, 16(6): 501 doi: 10.1007/BF03378282
    [18] Zhang G Y, Wan X F, Lin D, et al. Carbon content prediction at blowing end-point of converter with off-gas analysis. J Mater Metall, 2007, 6(1): 3 doi: 10.3969/j.issn.1671-6620.2007.01.001

    張貴玉, 萬雪峰, 林東, 等. 應用爐氣分析預測轉爐吹煉終點碳含量. 材料與冶金學報, 2007, 6(1):3 doi: 10.3969/j.issn.1671-6620.2007.01.001
    [19] Glasgow J A, Porter W F, Morrill J. Development and operation of BOF dynamic control. JOM, 1967, 19(8): 81 doi: 10.1007/BF03378624
    [20] Uemura T, Yamamoto T, Kitagawa Y, et al. Process computer system at the No. 3 BOF shop in Wakayama Steel Works. Sumitomo Metal, 1973, 25(1): 71

    植村卓郎, 山本哲也, 北川美教, 等. 和歌山製鉄所第三製鋼工場計算機制御. 住友金屬, 1973, 25(1):71
    [21] Liu K, Liu L, He P, et al. A new algorithm of endpoint carbon content of BOF based on of off-gas analysis. Steelmaking, 2009, 25(1): 33

    劉錕, 劉瀏, 何平, 等. 基于煙氣分析轉爐終點碳含量控制的新算法. 煉鋼, 2009, 25(1):33
    [22] Tu H. Study on Converter Dynamic Process Model Based on Flue Gas Detection[Dissertation]. Shanghai: Shanghai University, 2002

    屠海. 基于爐氣檢測的轉爐動態過程模型研究[學位論文]. 上海: 上海大學, 2002
    [23] Li N, Lin W H, Cao L L, et al. Carbon prediction model for basic oxygen furnace off-gas analysis based on bath mixing degree. Chin J Eng, 2018, 40(10): 1244

    李南, 林文輝, 曹玲玲, 等. 基于熔池混勻度的轉爐煙氣分析定碳模型. 工程科學學報, 2018, 40(10):1244
    [24] Li G H, Wang B, Liu Q, et al. A process model for BOF process based on bath mixing degree. Int J Miner Metall Mater, 2010, 17(6): 715 doi: 10.1007/s12613-010-0379-4
    [25] Rout B K, Brooks G, Akbar Rhamdhani M, et al. Dynamic model of basic oxygen steelmaking process based on multizone reaction kinetics: modeling of decarburization. Metall Mater Trans B, 2018, 49(3): 1022 doi: 10.1007/s11663-018-1244-5
    [26] Shukla A K, Deo B, Millman S, et al. An insight into the mechanism and kinetics of reactions in BOF steelmaking: theory vs practice. Steel Res Int, 2010, 81(11): 940 doi: 10.1002/srin.201000123
  • 加載中
圖(7) / 表(2)
計量
  • 文章訪問數:  1291
  • HTML全文瀏覽量:  1112
  • PDF下載量:  57
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-11-23
  • 刊出日期:  2020-07-01

目錄

    /

    返回文章
    返回