<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

THMC多場耦合作用下巖石力學實驗與數值模擬研究進展

顏丙乾 任奮華 蔡美峰 郭奇峰 喬趁

顏丙乾, 任奮華, 蔡美峰, 郭奇峰, 喬趁. THMC多場耦合作用下巖石力學實驗與數值模擬研究進展[J]. 工程科學學報, 2021, 43(1): 47-57. doi: 10.13374/j.issn2095-9389.2019.07.29.005
引用本文: 顏丙乾, 任奮華, 蔡美峰, 郭奇峰, 喬趁. THMC多場耦合作用下巖石力學實驗與數值模擬研究進展[J]. 工程科學學報, 2021, 43(1): 47-57. doi: 10.13374/j.issn2095-9389.2019.07.29.005
YAN Bing-qian, REN Fen-hua, CAI Mei-feng, GUO Qi-feng, QIAO Chen. Research review of rock mechanics experiment and numerical simulation under THMC multi-field coupling[J]. Chinese Journal of Engineering, 2021, 43(1): 47-57. doi: 10.13374/j.issn2095-9389.2019.07.29.005
Citation: YAN Bing-qian, REN Fen-hua, CAI Mei-feng, GUO Qi-feng, QIAO Chen. Research review of rock mechanics experiment and numerical simulation under THMC multi-field coupling[J]. Chinese Journal of Engineering, 2021, 43(1): 47-57. doi: 10.13374/j.issn2095-9389.2019.07.29.005

THMC多場耦合作用下巖石力學實驗與數值模擬研究進展

doi: 10.13374/j.issn2095-9389.2019.07.29.005
基金項目: 國家自然科學基金面上資助項目(51774022);國家重點研發計劃資助項目(2017YFC0804101)
詳細信息
    通訊作者:

    E-mail: qifeng_024@163.com

  • 中圖分類號: TG741.7

Research review of rock mechanics experiment and numerical simulation under THMC multi-field coupling

More Information
  • 摘要: 巖石多場耦合作用的研究是當前研究的熱點難點問題,為了更好的分析巖石在多場耦合作用條件下的作用機理,主要通過實驗和數值模擬兩方面進行研究。在總結國內外多場耦合微觀–細觀–宏觀多尺度力學試驗設備的改進和研發、數值模擬軟件及耦合計算程序的開發等方面的研究現狀的基礎上,展望多場多相耦合作用下巖石力學實驗設備和數值分析的研究方向。為了研究巖石多場耦合作用下的力學性能,通過改進和研發設計了不同物理場多場耦合試驗系統,在開發試驗設備的基礎上引起和發展現代無損探測手段,比如實時CT(Computed tomography)掃描技術,電鏡掃描技術(SEM)、核磁共振技術(NMRI)、X射線立體成像法、超聲波技術等,既能無損檢測到巖石的內部孔隙微細觀結構及演化過程,也能得出巖石在溫度?水流?應力?化學(THMC)多場耦合作用中各物理場的宏觀關系,進一步從微細觀和宏觀相結合的角度得出巖石在多場耦合作用下的性能。隨著計算機技術的進步,巖石多場耦合作用下的數值模擬軟件及耦合計算程序的開發有了一定的發展,特別是TOUGHREACT與FLAC3D相結合的THMC四場耦合作用的數值模擬軟件和數值仿真軟件Comsol與Matlab對接的多場耦合計算程序的開發,為巖石多場耦合模擬的開展提供了技術支持。

     

  • 圖  1  三軸水力耦合試驗機[5]

    Figure  1.  Experimental machine couplinghy draulic and mechanic[5]

    圖  2  三軸室示意圖

    Figure  2.  Schematic diagram of triaxial chamber

    圖  3  巖石裂隙多場耦合試驗系統[8]

    Figure  3.  Multifield coupling equipment system for rock fracture[7]

    圖  4  試驗設備子系統關系

    Figure  4.  Relationship chart of test equipment subsystem

    圖  5  鹽巖裂隙溶解的試驗裝置圖

    Figure  5.  Experimental setup for coupled fluid flow and dissolution test for salt rock fracture

    圖  6  巖石THMC多場耦合作用下水流裝置和原理圖[10]

    1 ―CO2 cylinder; 2 ―CH4 gas; 3 ―pressure sensor; 4 ―servo pump; 5 ―hydraulic oil circuit; 6 ―triaxial pressure chamber; 7 ―axial deformation sensor; 8 ―radial deformation sensor; 9 ―constant temperature oil bath; 10 ―flowmeter; 11 ―vacuum pump; 12 ―computer; 13 ―intake pipe; 14 ―outlet pipe; 15 ―data acquisition line

    Figure  6.  Device and schematic diagram under THMC multi field coupling of rocks[10]

    圖  7  巖石THMC多因素耦合試驗系統

    Figure  7.  Test system coupling THMC processes of rocks

    圖  8  溫度控制及化學溶液自配系統原理

    Figure  8.  Schematic diagram of temperature control and self-distribution system of chemical solution

    圖  9  滲透試驗前后的裂隙形態對比圖[15]

    Figure  9.  Comparison of scanned core images between test initiation and after 1492 hours[15]

    圖  10  鹽巖及粉砂質頁巖細觀結構[16]。(a)試件分層電鏡掃描示意圖;(b)第30層掃描圖;(c)第90層掃描圖;(d)微裂隙電鏡掃描圖

    Figure  10.  Meso structure of salt rock and silty shale: (a) schematic image of layered scanning of specimen; (b) layer 30; (c) layer 90; (d) scanned core image of microcrack

    表  1  深部巖體工程多場耦合程序[31-32]

    Table  1.   Codes for modeling the multi-field coupling programs for deep rock engineering[31-32]

    Multi-field coupling functionProcedureAlgorithmReferences
    THMCCOMSOLFinite elementPirnia et al.[33]
    FALCONFinite elementXia et al.[34]
    FEHMFinite elementPandey et al.[35]
    OpenGeoSysFinite elementKolditz et al.[36]
    STOMPFinite volumeScheibe et al.[37]
    THMFluentFinite volumeCao et al.[38]
    GEOFRACBoundary elementVecchiarelli[39]
    TOUGH-FLACFinite differenceRutqvist[40]
    THCNUFTFinite volumeBlair et al. [41]
    SHEMATFinite differenceClauser et al. [42]
    TOUGHREACTFinite differenceXu et al. [43]
    HMGEOSFinite element + Finite volumeSettgast[44]
    THGPRSFinite volumeWong et al.[45]
    MRSTFinite volumeLie et al.[46]
    FEFLOWFinite elementDiersch[47]
    FEFLOWFinite elementDiersch[47]
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wang Y C. Study on Creep Law of Deep Soft Rock under Thermal-Mechanical-Chemical Coupling Effect [Dissertation]. Qingdao: Qingdao University of Science and Technology, 2013

    王艷春. 深部軟巖溫度—應力—化學三場耦合作用下蠕變規律研究[學位論文]. 青島: 青島科技大學, 2013
    [2] Chen W Z, Yu H D, Wang X Q, et al. Development of a double linkage triaxial testing machine for hydro-mechanical coupling in soft rock. Chin J Rock Mech Eng, 2009, 28(11): 2176 doi: 10.3321/j.issn:1000-6915.2009.11.003

    陳衛忠, 于洪丹, 王曉全, 等. 雙聯動軟巖滲流–應力耦合流變儀的研制. 巖石力學與工程學報, 2009, 28(11):2176 doi: 10.3321/j.issn:1000-6915.2009.11.003
    [3] Jia Y R. Research on triaxial rock creep apparatus and its preliminary test results. J Wuhan Inst Hydraul Eng, 1985(1): 149

    賈愚如. 巖石三軸流變儀的研制及初步試驗成果. 武漢水利電力學院學報, 1985(1):149
    [4] Ping C, Wen Y D, Wang Y X, et al. Study on nonlinear damage creep constitutive model for high-stress soft rock. Environ Earth Sci, 2016, 75(10): 900 doi: 10.1007/s12665-016-5699-x
    [5] Wang X J, Rong G, Zhou C B. Permeability experimental study of gritstone in deformation and failure processes. Chin J Rock Mech Eng, 2012, 31(Suppl1): 2940

    王小江, 榮冠, 周創兵. 粗砂巖變形破壞過程中滲透性試驗研究. 巖石力學與工程學報, 2012, 31(增刊1): 2940
    [6] Peng J, Rong G, Zhou C B, et al. Experimental study of effect of water pressure on progressive failure process of rocks under compression. Rock Soil Mech, 2013, 34(4): 941

    彭俊, 榮冠, 周創兵, 等. 水壓影響巖石漸進破裂過程的試驗研究. 巖土力學, 2013, 34(4):941
    [7] Sheng J C, Li F B, Yao D S, et al. Experimental study of seepage properties in rocks fracture under coupled hydro-mechano-chemical process. Chin J Rock Mech Eng, 2012, 31(5): 1016 doi: 10.3969/j.issn.1000-6915.2012.05.019

    盛金昌, 李鳳濱, 姚德生, 等. 滲流-應力-化學耦合作用下巖石裂隙滲透特性試驗研究. 巖石力學與工程學報, 2012, 31(5):1016 doi: 10.3969/j.issn.1000-6915.2012.05.019
    [8] Ye Y M. Research on Heating System and Hydraulic Servo System of Integral Rock Mechanics Testing Machine [Dissertation]. Beijing: Beijing Jiaotong University, 2018

    葉育茂. 一體式巖石力學試驗機加熱系統及液壓伺服系統研究[學位論文]. 北京: 北京交通大學, 2018
    [9] Zhou H, Tang Y C, Hu D W, et al. Study on coupled penetrating-dissolving model and experiment for salt rock cracks. Chin J Rock Mech Eng, 2006, 25(5): 946 doi: 10.3321/j.issn:1000-6915.2006.05.012

    周輝, 湯艷春, 胡大偉, 等. 鹽巖裂隙滲流–溶解耦合模型及試驗研究. 巖石力學與工程學報, 2006, 25(5):946 doi: 10.3321/j.issn:1000-6915.2006.05.012
    [10] Zhang D C, Zhou J P, Xian X F, et al. Experiment study on the coupling multi-field effect on the dynamic variation of permeability in shale. Chin J Underground Space Eng, 2018, 14(3): 613

    張道川, 周軍平, 鮮學福, 等. 多場耦合作用下頁巖滲透特性實驗研究. 地下空間與工程學報, 2018, 14(3):613
    [11] Sheng J C, Du Y C, Zhou Q, et al. Development and application of a permeability test system for rock coupling thermal-hydrological-mechanical-chemical Processes. J Yangtze River Sci Res Inst, 2019, 36(3): 145 doi: 10.11988/ckyyb.20171049

    盛金昌, 杜昀宸, 周慶, 等. 巖石THMC多因素耦合試驗系統研制與應用. 長江科學院院報, 2019, 36(3):145 doi: 10.11988/ckyyb.20171049
    [12] Xu W J, Wang S, Zhang H Y, et al. Discrete element modelling of a soil-rock mixture used in an embankment dam. Int J Rock Mech Min Sci, 2016, 86: 141 doi: 10.1016/j.ijrmms.2016.04.004
    [13] Liu D M, Cai M F, Zhou Y B. Study on the relationship between meso damage development and macro deformation of rock under uniaxial compression. China Tungsten Ind, 2006, 21(4): 16 doi: 10.3969/j.issn.1009-0622.2006.04.006

    劉冬梅, 蔡美峰, 周玉斌. 巖石細觀損傷演化與宏觀變形響應關聯研究. 中國鎢業, 2006, 21(4):16 doi: 10.3969/j.issn.1009-0622.2006.04.006
    [14] Zhang F, Wang L, Zhao J J, et al. Evolution of permeability of granite with tensile and compressive-shear cracks. Rock Soil Mech, 2016, 37(10): 2803

    張帆, 王亮, 趙建建, 等. 花崗巖張拉和壓剪裂隙滲透率演化研究. 巖土力學, 2016, 37(10):2803
    [15] Polak A, Elsworth D, Liu J S, et al. Spontaneous switching of permeability changes in a limestone fracture with net dissolution. Water Resour Res, 2004, 40(3): W03502
    [16] Zhou H W, He J M, Wu Z D. Permeability and meso-structure characteristics of bedded salt rock. Chin J Rock Mech Eng, 2009, 28(10): 2068 doi: 10.3321/j.issn:1000-6915.2009.10.014

    周宏偉, 何金明, 武志德. 含夾層鹽巖滲透特性及其細觀結構特征. 巖石力學與工程學報, 2009, 28(10):2068 doi: 10.3321/j.issn:1000-6915.2009.10.014
    [17] Homand-Etienne F, Houpert R. Thermally induced microcracking in granites: characterization and analysis. Int J Rock Mech Min Sci Geomech Abstracts, 1989, 26(2): 125 doi: 10.1016/0148-9062(89)90001-6
    [18] Wang Y, Dusseault M B. A coupled conductive–convective thermo-poroelastic solution and implications for wellbore stability. J Petrol Sci Eng, 2003, 38(3-4): 187 doi: 10.1016/S0920-4105(03)00032-9
    [19] Ge X R. Deformation control law of rock fatigue failure, real-time X-ray CT scan of geotechnical testing, and new method of stability analysis of slopes and dam foundations. Chin J Geotech Eng, 2008, 30(1): 1 doi: 10.3321/j.issn:1000-4548.2008.01.001

    葛修潤. 巖石疲勞破壞的變形控制律、巖土力學試驗的實時X射線CT掃描和邊坡壩基抗滑穩定分析的新方法. 巖土工程學報, 2008, 30(1):1 doi: 10.3321/j.issn:1000-4548.2008.01.001
    [20] Chen S L, Zhang J Y, Ning B K, et al. Experimental study of sodium sulfate solution effect on the shear strength of cemented soil. Adv Sci Technol Water Resour, 2015, 35(6): 82 doi: 10.3880/j.issn.1006-7647.2015.06.016

    陳四利, 張精禹, 寧寶寬, 等. 硫酸鈉溶液對水泥土抗剪強度的影響試驗. 水利水電科技進展, 2015, 35(6):82 doi: 10.3880/j.issn.1006-7647.2015.06.016
    [21] Chen S L, Feng X T, Li S J. The effects of chemical erosion on mechanical behaviors of Xiaolangdi sandstone. Rock Soil Mech, 2002, 23(3): 284 doi: 10.3969/j.issn.1000-7598.2002.03.006

    陳四利, 馮夏庭, 李邵軍. 化學腐蝕對黃河小浪底砂巖力學特性的影響. 巖土力學, 2002, 23(3):284 doi: 10.3969/j.issn.1000-7598.2002.03.006
    [22] Zhou K Q, Chu Z H, Zhang Y Z, et al. Research of the detection method and thermal cracking of rock. Chin J Rock Mech Eng, 2000, 19(4): 412 doi: 10.3321/j.issn:1000-6915.2000.04.003

    周克群, 楚澤涵, 張元中, 等. 巖石熱開裂與檢測方法研究. 巖石力學與工程學報, 2000, 19(4):412 doi: 10.3321/j.issn:1000-6915.2000.04.003
    [23] Yang J, Kang Y L, Li C L, et al. Study on the time-space distribution of liquid phase around wellbore in the fractured tight sandstone reservoir. Oil Drill Prod Technol, 2010, 32(1): 57 doi: 10.3969/j.issn.1000-7393.2010.01.014

    楊建, 康毅力, 李朝林, 等. 裂縫性致密砂巖儲層井周液相時空分布規律. 石油鉆采工藝, 2010, 32(1):57 doi: 10.3969/j.issn.1000-7393.2010.01.014
    [24] Dong J J, Hsu J Y, Wu W J, et al. Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. Int J Rock Mech Min Sci, 2010, 47(7): 1141 doi: 10.1016/j.ijrmms.2010.06.019
    [25] Lysmer J, Kulemeyer R L. Finite dynamic models for infinite media. J Eng Mech Div, 1969, 95: 759
    [26] Jaswon M A, Poter A R. An integral equation solution of the torsion problem. Proc R Soc London Ser A, 1963, 273(1353): 237 doi: 10.1098/rspa.1963.0085
    [27] Cundall P A. A computer model for simulating progressive, large scale movements in rocky block systems. Proc Symp Int Soc Rock Mech, 1971, 2: 129
    [28] Shi G H. Discontinuous Deformation Analysis for Jointed Rock Masses and Other Dynamics of Block System [Dissertation]. Berkeley: University of California, 1988
    [29] Yan B, Kouame K J, Lv W, et al. Influence of new hydrophobic agent on the mechanical properties of modified cemented paste backfill. J Mater Res Technol, 2019, 8(6): 5716 doi: 10.1016/j.jmrt.2019.09.039
    [30] Liu Q S, Liu X W. Research on critical problem for fracture network propagation and evolution with multifield coupling of fractured rock mass. Rock Soil Mech, 2014, 35(2): 305

    劉泉聲, 劉學偉. 多場耦合作用下巖體裂隙擴展演化關鍵問題研究. 巖土力學, 2014, 35(2):305
    [31] Steefel C I, Appelo C A, Arora B, et al. Reactive transport codes for subsurface environmental simulation. Comput Geosci, 2015, 19(3): 445 doi: 10.1007/s10596-014-9443-x
    [32] White M D, Phillips B R. Code comparison study fosters confidence in the numerical simulation of enhanced geothermal systems // Fortieth Workshop on Geothermal Reservoir Engineering. Stanford, 2015: SGP-TR-204
    [33] Pirnia P, Duhaime F, Ethier Y, et al. ICY: an interface between COMSOL multiphysics and discrete element code YADE for the modelling of porous media. Comput Geosci, 2018, 123: 38
    [34] Xia Y D, Plummer M, Mattson E, et al. Design, modeling, and evaluation of a doublet heat extraction model in enhanced geothermal systems. Renewable Energy, 2017, 105: 232 doi: 10.1016/j.renene.2016.12.064
    [35] Pandey S N, Chaudhuri A, Kelkar S. A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir. Geothermics, 2017, 65: 17 doi: 10.1016/j.geothermics.2016.08.006
    [36] Kolditz O, Shao H, Wang W Q, et al. Thermo-Hydro-Mechanical Chemical Processes in Fractured Porous Media: Modelling and Benchmarking. Berlin: Springer, 2016
    [37] Scheibe T D, Yang X F, Chen X Y, et al. A hybrid multiscale framework for subsurface flow and transport simulations. Procedia Comput Sci, 2015, 51: 1098 doi: 10.1016/j.procs.2015.05.276
    [38] Cao W J, Huang W B, Jiang F M. A thermal-hydraulic-mechanical fully coupled model for heat extraction in enhanced geothermal systems // Proceedings Word Geothermal Congress. Melbourne, 2015: 1
    [39] Vecchiarelli A. Application of the 3-D Hydro-Mechanical Model GEOFRAC in Enhanced Geothermal Systems [Dissertation]. Massachusetts Institute of Technology, 2013
    [40] Rutqvist J. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Comput Geosci, 2011, 37(6): 739 doi: 10.1016/j.cageo.2010.08.006
    [41] Blair S C, Carlson S R, Lee K, et al. Coupled THM simulations of the drift scale test at Yucca Mountain // 5th American Rock Mechanics Symposium (NARMS) and 17th Tunneling Association of Canada (TAC) Conference. Toronto, 2002
    [42] Clauser C, Bartels J. Numerical Simulation of Reactive Flow in Hot Aquifers: SHEMAT and Processing SHEMAT. Springer Science & Business Media, 2003
    [43] Xu T F, Sonnenthal E, Spycher N, et al. TOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci, 2006, 32(2): 145 doi: 10.1016/j.cageo.2005.06.014
    [44] Settgast R R, Johnson S, Fu P, et al. Simulation of hydraulic fracture networks in three dimensions utilizing massively parallel computing resources // Unconventional Resources Technology Conference. Denver, Colorado, 2014: 1730
    [45] Wong Z Y, Horne R, Voskov D. A geothermal reservoir simulator with AD-GPRS // Proceedings World Geothermal Congress. Melbourne, 2015: 1
    [46] Lie K A, Krogstad S, Ligaarde I S, et al. Open-source MATLAB implementation of consistent discretisations on complex grids. Comput Geosci, 2012, 16(2): 297 doi: 10.1007/s10596-011-9244-4
    [47] Diersch H J G. FEFLOW: Finite Eement Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Springer Science & Business Media, 2013
    [48] Yang B, Xu T F, Li F Y, et al. Numerical simulation on impact of water-rock interaction on reservoir permeability: a case study of upper Paleozoic sandstone reservoirs in Northeastern Ordos Basin. J Jilin Univ Earth Sci, 2019, 49(2): 526

    楊冰, 許天福, 李鳳昱, 等. 水-巖作用對儲層滲透性影響的數值模擬研究——以鄂爾多斯盆地東北部上古生界砂巖儲層為例. 吉林大學學報(地球科學版), 2019, 49(2):526
    [49] Yan B, Guo Q, Ren F, et al. Modified Nishihara model and experimental verification of deep rock mass under the water-rock interaction. Int J Rock Mech Min Sci, 2020, 128: 104250 doi: 10.1016/j.ijrmms.2020.104250
    [50] Wang X. Deformation characteristics of deep roadway under the influence of temperature and groundwater. Coal Sci Technol Mag, 2018(1): 22 doi: 10.3969/j.issn.1008-3731.2018.01.007

    王曉. 深部巷道在溫度和地下水影響下的變形特征. 煤炭科技, 2018(1):22 doi: 10.3969/j.issn.1008-3731.2018.01.007
    [51] Hou Z M, Gou Y, Taron J, et al. Thermo-hydro-mechanical modeling of carbon dioxide injection for enhanced gas-recovery (CO2-EGR): a benchmarking study for code comparison. Environ Earth Sci, 2012, 67(2): 549 doi: 10.1007/s12665-012-1703-2
    [52] Yan B, Ren F, Cai M, et al. Bayesian model based on Markov chain Monte Carlo for identifying mine water sources in submarine gold mining. J Clean Prod, 2020, 253: 120008 doi: 10.1016/j.jclepro.2020.120008
    [53] Yu Z W, Zhang Y J, Zhang Q, et al. Algorithm of TOUGHREACT links to FLAC3D. J Jilin Univ Earth Sci Ed, 2013, 43(1): 199

    于子望, 張延軍, 張慶, 等. TOUGHREACT搭接FLAC3D算法. 吉林大學學報(地球科學版), 2013, 43(1):199
    [54] Nardi A, Idiart A, Trinchero P, et al. Interface COMSOL-PHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry. Comput Geosci, 2014, 69: 10 doi: 10.1016/j.cageo.2014.04.011
    [55] Nasir O, Fall M, Evgin E. A simulator for modeling of porosity and permeability changes in near field sedimentary host rocks for nuclear waste under climate change influences. Tunnell Underground Space Technol, 2014, 42: 122 doi: 10.1016/j.tust.2014.02.010
  • 加載中
圖(10) / 表(1)
計量
  • 文章訪問數:  3504
  • HTML全文瀏覽量:  2676
  • PDF下載量:  276
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-29
  • 刊出日期:  2021-01-25

目錄

    /

    返回文章
    返回