<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

3Cr鋼在油水兩相層流工況下的腐蝕行為

孟凡娟 王清 李慧心 向婉倩 姚海元 王赟 李清平 王貝 路民旭 張雷

孟凡娟, 王清, 李慧心, 向婉倩, 姚海元, 王赟, 李清平, 王貝, 路民旭, 張雷. 3Cr鋼在油水兩相層流工況下的腐蝕行為[J]. 工程科學學報, 2020, 42(8): 1029-1039. doi: 10.13374/j.issn2095-9389.2019.07.27.003
引用本文: 孟凡娟, 王清, 李慧心, 向婉倩, 姚海元, 王赟, 李清平, 王貝, 路民旭, 張雷. 3Cr鋼在油水兩相層流工況下的腐蝕行為[J]. 工程科學學報, 2020, 42(8): 1029-1039. doi: 10.13374/j.issn2095-9389.2019.07.27.003
MENG Fan-juan, WANG Qing, LI Hui-xin, XIANG Wan-qian, YAO Hai-yuan, WANG Yun, LI Qing-ping, WANG Bei, LU Min-xu, ZHANG Lei. Corrosion behavior for 3Cr steel under oil-water two-phase laminar flow conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 1029-1039. doi: 10.13374/j.issn2095-9389.2019.07.27.003
Citation: MENG Fan-juan, WANG Qing, LI Hui-xin, XIANG Wan-qian, YAO Hai-yuan, WANG Yun, LI Qing-ping, WANG Bei, LU Min-xu, ZHANG Lei. Corrosion behavior for 3Cr steel under oil-water two-phase laminar flow conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 1029-1039. doi: 10.13374/j.issn2095-9389.2019.07.27.003

3Cr鋼在油水兩相層流工況下的腐蝕行為

doi: 10.13374/j.issn2095-9389.2019.07.27.003
基金項目: 國家科技重大專項資助項目(2016ZX05028-004)
詳細信息
    通訊作者:

    E-mail:zhanglei@ustb.edu.cn

  • 中圖分類號: TG142.71

Corrosion behavior for 3Cr steel under oil-water two-phase laminar flow conditions

More Information
  • 摘要: 油水兩相是海底管道和集輸管線常見的腐蝕工況之一。以3Cr鋼為代表的低Cr合金鋼是目前具有良好耐蝕性能的重要材料,但是,在油水兩相層流工況下,特別是加注了一定緩蝕劑的條件下,3Cr鋼的適用性尚不明確。通過高溫高壓反應釜模擬了油水兩相層流工況的腐蝕環境,結合掃描電子顯微鏡(SEM)、X射線衍射譜(XRD)、激光共聚焦拉曼光譜、電化學交流阻抗等測試表征方法,研究了3Cr鋼的腐蝕行為及緩蝕劑對其耐蝕性能的影響。結果表明,在油水分層工況下,3Cr鋼的腐蝕產物膜為明顯的雙層膜結構,其內層腐蝕產物膜為結構致密的富Cr層,表現出良好的抗CO2腐蝕性能,但加入100 mg·L?1十七烯基胺乙基咪唑啉季銨鹽緩蝕劑后,3Cr鋼并未得到有效的緩蝕保護。腐蝕產物分析和電化學研究表明,烷烴分子、緩蝕劑分子及富Cr層間存在競爭關系,烷烴分子干擾了緩蝕劑分子的有序排列,影響了3Cr鋼的耐蝕性。

     

  • 圖  1  十七烯基胺乙基咪唑啉季銨鹽的結構

    Figure  1.  Structure of seventeen alkenyl amide ethyl imidazoline quaternary ammonium salt

    圖  2  油水兩相管道流型置示意圖[20]

    Figure  2.  Schematic of the pipeline in oil-water flow[20]

    圖  3  高溫高壓反應釜裝置示意圖

    Figure  3.  Schematic of the high-temperature and high-pressure autoclave

    圖  4  3Cr鋼及X65鋼浸泡120 h后的平均腐蝕速率

    Figure  4.  Average corrosion rate of 3Cr steel and X65 steel after immersion for 120 h

    圖  5  不同環境下3Cr鋼及X65鋼腐蝕產物膜的表面形貌及截面形貌。(a)單一水相中3Cr表面;(b)單一水相中3Cr截面;(c)油水分層后的水相中X65表面;(d)油水分層后的水相中X65截面;(e)油水分層后的水相中3Cr表面;(f)油水分層后的水相中3Cr截面;(g)添加OAI緩蝕劑后X65表面;(h)添加OAI緩蝕劑后X65截面;(i)添加OAI緩蝕劑后3Cr表面;(j)添加OAI緩蝕劑后3Cr截面

    Figure  5.  Surface topography and sectional morphology of the corrosion product film of 3Cr and X65 steel in different environments: (a) surface morphology on 3Cr in single water phase; (b) cross section of on 3Cr in single water phase; (c) surface morphology of X65 in water phase from 10% oil mixture; (d) cross section of X65 in water phase from 10% oil mixture; (e) surface morphology of 3Cr in water phase from 10% oil mixture; (f) cross section of 3Cr in water phase from 10% oil mixture; (g) surface morphology of X65 in water phase from 10% oil mixture with OAI addition; (h) cross section of X65 in water phase from 10% oil mixture with OAI addition; (i) surface morphology of 3Cr in water phase from 10% oil mixture with OAI addition; (j) cross section of 3Cr in water phase from 10% oil mixture with OAI addition

    圖  6  3Cr鋼及X65鋼浸泡120 h后的XRD測試結果

    Figure  6.  XRD results of 3Cr and X65 steel after immersion for 120 h

    圖  7  3Cr鋼經120 h浸泡后在水相區的腐蝕產物膜拉曼分析結果

    Figure  7.  Raman analysis of corrosion product film in 3Cr steel after immersion for 120 h

    圖  8  未添加緩蝕劑時3Cr鋼在油水分層后水相區交流阻抗測試結果。(a)腐蝕初期;(b)腐蝕中期;(c)腐蝕后期

    Figure  8.  EIS results of 3Cr steel in the aqueous phase after oil-water two phase stratification without corrosion inhibitor: (a) initial stage of corrosion; (b) medium stage of corrosion; (c) later stage of corrosion

    圖  9  3Cr鋼在油水分層后水相區腐蝕18 h后的膜截面形貌

    Figure  9.  Sectional morphology of the corrosion product film of 3Cr steel after 18 h corrosion in the aqueous phase after oil-water two phase stratification

    圖  10  3Cr鋼在油水分層后水相區腐蝕72 h后的腐蝕產物界面形貌

    Figure  10.  Microscopic morphology of 3Cr steel after 72 h corrosion in the aqueous phase after oil-water two phase stratification

    圖  11  未添加緩蝕劑時3Cr鋼在油水分層后水相區的EIS測試等效電路圖。(a)腐蝕初期(1、3、6、18 h);(b)腐蝕中期(24、36、48、72 h);(c)腐蝕后期(110、120 h)

    Figure  11.  Equivalent circuit used for fitting the EIS results of 3Cr steel in the aqueous phase after oil-water two phase stratification without corrosion inhibitor: (a) initial stage of corrosion(1, 3, 6, 18 h); (b) middle stage of corrosion (24, 36, 48, 72 h); (c) later stage of corrosion (110, 120 h)

    圖  12  加注100 mg?L?1緩蝕劑后3Cr鋼在油水分層后水相區的EIS測試結果。(a)腐蝕初期;(b)腐蝕中期;(c)腐蝕后期

    Figure  12.  Results of 3Cr steel in the aqueous phase after oil-water two phase stratification with 100 mg?L?1 corrosion inhibitor: (a) initial stage of corrosion; (b) medium stage of corrosion; (c) later stage of corrosion

    圖  13  加注100 mg?L?1緩蝕劑后3Cr鋼在油水分層后水相區的EIS測試等效電路圖。(a)腐蝕初期(1、3、6、18、24 h);(b)腐蝕中期(36、48 h);(c)腐蝕后期(72、110、120 h)

    Figure  13.  Equivalent circuit used for fitting the EIS results of 3Cr steel in the aqueous phase after oil-water two phase stratification with 100 mg?L?1 corrosion inhibitor: (a) initial stage of corrosion (1, 3, 6, 18, 24 h); (b) middle stage of corrosion (36, 48 h); (c) later stage of corrosion (72, 110, 120 h)

    圖  14  3Cr鋼在油水分層后水相區的腐蝕反應模型示意圖。(a)腐蝕初期;(b)腐蝕中期;(c)腐蝕后期

    Figure  14.  Schematic diagram of corrosion reaction model of 3Cr steel in the aqueous phase after oil-water two phase stratification:(a) initial stage of corrosion; (b) middle stage of corrosion; (c) later stage of corrosion

    圖  15  加注100 mg?L?1緩蝕劑后3Cr鋼在油水分層后水相區浸泡120 h后的腐蝕模型示意圖. (a)腐蝕初期;(b)腐蝕中期;(c)腐蝕后期

    Figure  15.  Schematic diagram of corrosion reaction model of 3Cr steel in the aqueous phase after oil-water two phase stratification with 100 mg?L?1 corrosion inhibitor:(a) initial stage of corrosion; (b) middle stage of corrosion; (c) later stage of corrosion

    表  1  3Cr管線鋼和X65管線鋼的化學成分(質量分數)

    Table  1.   Chemical composition of the 3Cr and X65 pipeline steel (mass fraction) %

    ElementsCMnSiCrMoSPFe
    3Cr0.070.550.202.960.150.030.003bal
    X650.041.500.200.020.030.011bal
    下載: 導出CSV

    表  2  油田地層水采出液的組分

    Table  2.   Composition of the test solution simulating the oilfield formation water mg·L?1

    IonsNa+Mg2+Ca2+K+Cl${\rm{SO}}_4^{2-} $${\rm{HCO}}_3^{-} $
    Concentration262311920274764435297197519
    下載: 導出CSV

    表  3  腐蝕產物EDS測試結果(原子數分數)

    Table  3.   Corrosion products’ results of EDS (atomic fraction) %

    ElementsFeCrCaO
    3Cr in Single water phase10.0622.8965.68
    X65 in water phase from 10% oil mixture20.5059.01
    Inner layer of 3Cr in water phase from 10% oil mixture6.6718.633.9552.46
    Outer layer of 3Cr in water phase from 10% oil mixture18.823.7651.12
    X65 in water phase from 10% oil mixture with OAI44.2914.03
    Inner layer of 3Cr in water phase from 10% oil mixture with OAI20.316.444.0954.78
    Outer layer of 3Cr in water phase from 10% oil mixture with OAI20.036.9858.29
    下載: 導出CSV

    表  4  未添加緩蝕劑時3Cr鋼在油水分層后水相區的EIS等效電路擬合結果

    Table  4.   Parameter values of the equivalent circuit of EIS of 3Cr steel in the aqueous phase after oil-water two phase stratification without corrosion inhibitor

    t/hRs/(Ω·cm2)CPEfRf/(Ω·cm2)CPEdlRct/(Ω·cm2)RL/(Ω·cm2)L/(H·cm?2)
    Y1/(10?4 Ω?1·cm?2?sn)n1Y2/(Ω?1·cm?2?sn)n2
    13.4236.2910.7261.21×10?20.3811.00071.1112.9501.678
    33.7146.5990.7501.00×10?20.6261.00060.819.8451.588
    64.0607.2290.80848.850.8221.0006.358.3042.306
    184.4977.4990.84039.341.2051.0005.419.2252.526
    244.7277.4610.84141.721.3401.00011.629.1832.584
    365.0727.1600.85046.541.9831.00010.919.8532.962
    485.4937.4220.85151.953.8251.0009.0911.4303.640
    725.9796.5330.81567.231.7391.0008.3110.6803.530
    1105.3216.9310.75321.421.4071.00061.71
    1204.8745.8060.50823.301.3511.00068.45
    下載: 導出CSV

    表  5  加注100 mg?L?1緩蝕劑后3Cr鋼在油水分層后水相區的EIS等效電路擬合結果

    Table  5.   Parameter values of the equivalent circuit of EIS of 3Cr steel in the aqueous phase after oil-water two phase stratification with 100 mg?L?1 corrosion inhibitor

    t/hRs/(Ω·cm2)CPEf1Rf1/(Ω·cm2)CPEf2
    Y1/(10?6Ω?1·cm?2·sn)n1Y2/(10?4Ω?1·cm?2·sn)n2
    16.911.9020.739
    313.851.3070.756
    620.571.1760.705
    1878.851.1840.457
    2487.601.1090.473
    360.100.3310.716181.32.2690.372
    480.100.1690.610386.82.2660.445
    720.013.4130.542541.30.9550.653
    1100.080.2450.742411.21.2110.556
    1200.061.1030.627499.81.0890.639
    t/hRf2/(Ω·cm2)CPEdlRct/(Ω·cm2)RL/(Ω·cm2)L/(H·cm?2)
    Y3/(Ω?1·cm?2·sn)n3
    1255.30.2821.00036.9070.125.52
    3397.50.1321.00072.25103.446.43
    6501.20.0841.00048.85121.145.66
    18846.50.1601.000137.10219.686.94
    24872.60.1531.000139.30222.989.85
    36957.70.2901.000175.10351.2194.00
    481079.00.1111.000205.90371.2235.10
    721309.00.1511.000235.50
    1101662.00.1461.000232.70
    1201687.00.1071.000271.5
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Pouraria H, Seo J K, Paik J K. A numerical study on water wetting associated with the internal corrosion of oil pipelines. <italic>Ocean Eng</italic>, 2016, 122: 105 doi: 10.1016/j.oceaneng.2016.06.022
    [2] Gardner T, Paolinelli L D, Nesic S. Study of water wetting in oil-water flow in a small-scale annular flume. <italic>Exp Therm Fluid Sci</italic>, 2019, 102: 506 doi: 10.1016/j.expthermflusci.2018.12.010
    [3] Choi H J, Tonsuwannarat T. Unique roles of hydrocarbons in flow-induced sweet corrosion of X-52 carbon steel in wet gas condensate producing wells // The 57th NACE Annual Conference. Houston, 2002: 02259
    [4] Choi H J. Effect of liquid hydrocarbons on flow-induced sweet corrosion of carbon steel // The 59th NACE Annual Conference. Houston, 2004: 04664
    [5] Pigliacampo L, Gonzales J C, Turconi G L. Window of application an operational track of low carbon 3Cr steel tubular // The 61th NACE Annual Conference. Houston, 2006: 06133
    [6] Hu L H, Yu M L, Chang W, et al. Effect of Cr content on resistance to CO<sub>2</sub>-induced corrosion of low alloy pipeline steels. <italic>Corros Sci Prot Technol</italic>, 2011, 23(3): 256

    胡麗華, 俞曼麗, 常煒, 等. Cr含量對低合金管線鋼CO<sub>2</sub>腐蝕性能的影響. 腐蝕科學與防護技術, 2011, 23(3):256
    [7] Liu W, Lu S L, Zhang P, et al. Effect of silty sand with different sizes on corrosion behavior of 3Cr steel in CO<sub>2</sub> aqueous environment. <italic>Appl Surf Sci</italic>, 2016, 379: 163 doi: 10.1016/j.apsusc.2016.04.044
    [8] Zhang L, Hu L H, Sun J B, et al. Microstructure and properties of CO<sub>2</sub> corrosion resistant low Cr pipeline steels. <italic>J Mater Eng</italic>, 2009(5): 6 doi: 10.3969/j.issn.1001-4381.2009.05.002

    張雷, 胡麗華, 孫建波, 等. 抗CO<sub>2</sub>腐蝕低Cr管線鋼組織和性能研究. 材料工程, 2009(5):6 doi: 10.3969/j.issn.1001-4381.2009.05.002
    [9] Guo S Q, Xu L N, Zhang L, et al. Corrosion of alloy steels containing 2% chromium in CO<sub>2</sub> environments. <italic>Corros Sci</italic>, 2012, 63: 246 doi: 10.1016/j.corsci.2012.06.006
    [10] Xie Y, Xu L N, Gao C L, et al. Corrosion behavior of novel 3%Cr pipeline steel in CO<sub>2</sub> top-of-line corrosion environment. <italic>Mater Des</italic>, 2012, 36: 54 doi: 10.1016/j.matdes.2011.11.003
    [11] Xu L N, Zhu J Y, Xie Y, et al. Mechanical properties and corrosion behavior of Cr containing pipeline steel. <italic>J Univ Sci Technol Beijing</italic>, 2014, 36(2): 200

    許立寧, 朱金陽, 謝云, 等. 含Cr管線鋼的力學性能和耐蝕性能. 北京科技大學學報, 2014, 36(2):200
    [12] Kermani B, Gonzales J C, Turconi G L, et al. In-field corrosion performance of 3% Cr steels in sweet and sour downhole production and water injection // Corrosion 2004. New Orleans, 2004: NACE-04111
    [13] Chen C F, Lu M X, Sun D B, et al. Effect of chromium on the pitting resistance of oil tube steel in a carbon dioxide corrosion system. <italic>Corrosion</italic>, 2005, 61(6): 594 doi: 10.5006/1.3278195
    [14] Hua Y, Mohammed S, Barker R, et al. Comparisons of corrosion behaviour for X65 and low Cr steels in high pressure CO<sub>2</sub>-saturated brine. <italic>J Mater Sci Technol</italic>, 2020, 41(15): 21
    [15] Wei L, Gao K W. Understanding the general and localized corrosion mechanisms of Cr-containing steels in supercritical CO<sub>2</sub>-saturated aqueous environments. <italic>J Alloys Compd</italic>, 2019, 792(5): 328
    [16] Zhu J Y, Xu L N, Lu M X, et al. Essential criterion for evaluating the corrosion resistance of 3Cr steel in CO<sub>2</sub> environments: prepassivation. <italic>Corros Sci</italic>, 2015, 93: 336 doi: 10.1016/j.corsci.2015.01.030
    [17] Wang L. Microstructure and Ion Selectivity of CO2 Corrosion Product Films [Dissertation]. Beijing: China University of Petroleum, Beijing, 2007

    王磊. CO2腐蝕產物膜微觀結構與離子選擇性研究[學位論文]. 北京: 中國石油大學(北京), 2007
    [18] Wang K, Yin Z F, Yang F, et al. Comparison of anti-corrosion properties of pipeline steels between 3Cr and 20<sup>#</sup> under simulated CO<sub>2</sub> flooding environment. <italic>Total Corros Control</italic>, 2013, 27(7): 45 doi: 10.3969/j.issn.1008-7818.2013.07.012

    王珂, 尹志福, 楊帆, 等. 模擬CO<sub>2</sub>驅環境下3Cr和20#集輸管線鋼防腐性能對比. 全面腐蝕控制, 2013, 27(7):45 doi: 10.3969/j.issn.1008-7818.2013.07.012
    [19] Wang K, Zhang Y Q, Yin Z F, et al. Corrosion behavior of N80 and 3Cr tubing steels in CO<sub>2</sub> flooding environment. <italic>Corros Prot</italic>, 2015, 36(8): 706 doi: 10.11973/fsyfh-201508003

    王珂, 張永強, 尹志福, 等. N80和3Cr油管鋼在CO<sub>2</sub>驅油環境中的腐蝕行為. 腐蝕與防護, 2015, 36(8):706 doi: 10.11973/fsyfh-201508003
    [20] Kee K E, Richter S, Babic M, et al. Experimental study of oil-water flow patterns in a large diameter flow loop—the effect on water wetting and corrosion. <italic>Corrosion</italic>, 2015, 72(4): 569
    [21] Cui L, Gao Y, Gu C S, et al. Effect of trace element Cr on microstructures and properties of welded Joints of marine corrosion resisting steels. <italic>J Beijing Univ Technol</italic>, 2018, 44(6): 953

    崔麗, 高艷, 顧長石, 等. 微量元素Cr對船用耐蝕鋼焊接接頭組織和性能的影響. 北京工業大學學報, 2018, 44(6):953
    [22] Wang B, Xu L N, Liu G Z, et al. Corrosion behavior and mechanism of 3Cr steel in CO<sub>2</sub> environment with various Ca<sup>2+</sup> concentration. <italic>Corros Sci</italic>, 2018, 136: 210 doi: 10.1016/j.corsci.2018.03.013
    [23] Lin X Q. Corrosion Behavior of Carbon steel and Low Alloy Steel in CO2 and O2 High Temperature and High Pressure Environment of Oil and Gas Fields[Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    林學強. 碳鋼和低合金鋼在含O2高溫高壓CO2油氣田環境中腐蝕行為研究[學位論文]. 北京: 北京科技大學, 2015
    [24] Liu J X, Zhou Z L, Cao Z Q, et al. Corrosion properties of Cu-50Co bulk alloys in NaCl solution. <italic>Chin J Rare Met</italic>, 2020, 44(2): 127

    劉嘉欣, 周子力, 曹中秋, 等. Cu-50Co塊體合金在NaCl溶液中的腐蝕性能研究. 稀有金屬, 2020, 44(2):127
    [25] Zhu J Y, Xu L N, Lu M X. Electrochemical impedance spectroscopy study of the corrosion of 3Cr pipeline steel in simulated CO<sub>2</sub>-saturated oilfield formation waters. <italic>Corrosion</italic>, 2015, 71(7): 854 doi: 10.5006/1494
    [26] Li C, Richter S, Nesic S. How do inhibitors mitigate corrosion in oil-water two-phase flow beyond lowering the corrosion rate. <italic>Corrosion</italic>, 2014, 70(9): 958 doi: 10.5006/1057
    [27] Zhu J Y, Xu L N, Lu M X, et al. Interaction effect between Cr(OH)<sub>3</sub> passive layer formation and inhibitor adsorption on 3Cr steel surface. <italic>RSC Adv</italic>, 2015, 5(24): 18518 doi: 10.1039/C4RA15519J
  • 加載中
圖(15) / 表(5)
計量
  • 文章訪問數:  1447
  • HTML全文瀏覽量:  1072
  • PDF下載量:  51
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-27
  • 刊出日期:  2020-09-11

目錄

    /

    返回文章
    返回