[1] |
Amjadi M, Kyung K U, Park I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater, 2016, 26(11): 1678 doi: 10.1002/adfm.201504755
|
[2] |
Bae G Y, Pak S W, Kim D, et al. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater, 2016, 28(26): 5300 doi: 10.1002/adma.201600408
|
[3] |
Trung T Q, Lee N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater, 2016, 28(22): 4338 doi: 10.1002/adma.201504244
|
[4] |
Wang X D, Zhang H L, Dong L, et al. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv Mater, 2016, 28(15): 2896 doi: 10.1002/adma.201503407
|
[5] |
Xu S, Zhang Y H, Jia L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 2014, 344(6179): 70 doi: 10.1126/science.1250169
|
[6] |
Zhong W B, Liu Q Z, Wu Y Z, et al. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. Nanoscale, 2016, 8(24): 12105 doi: 10.1039/C6NR02678H
|
[7] |
Hammock M L, Chortos A, Tee B C K, et al. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25(42): 5997 doi: 10.1002/adma.201302240
|
[8] |
Wu Z C, Chen Z H, Du X, et al. Transparent, conductive carbon nanotube films. Science, 2004, 305(5688): 1273 doi: 10.1126/science.1101243
|
[9] |
Opatkiewicz J P, LeMieux M C, Liu D, et al. Using nitrile functional groups to replace amines for solution-deposited single-walled carbon nanotube network films. ACS Nano, 2012, 6(6): 4845 doi: 10.1021/nn300124y
|
[10] |
Small W R, in het Panhuis M. Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small, 2007, 3(9): 1500 doi: 10.1002/smll.200700110
|
[11] |
Kang S J, Kocabas C, Ozel T, et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotechnol, 2007, 2: 230 doi: 10.1038/nnano.2007.77
|
[12] |
Lipomi D J, Vosgueritchian M, Tee B C K, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnol, 2011, 6: 788 doi: 10.1038/nnano.2011.184
|
[13] |
Lin D W, Bettinger C J, Ferreira J P, et al. A cell-compatible conductive film from a carbon nanotube network adsorbed on poly-L-lysine. ACS Nano, 2011, 5(12): 10026 doi: 10.1021/nn203870c
|
[14] |
Wang K, Ruan J, Song H, et al. Biocompatibility of graphene oxide. Nanoscale Res Lett, 2011, 6: art. No. 8 doi: 10.1007/s11671-010-9751-6
|
[15] |
Bettinger C J, Bao Z N. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv Mater, 2010, 22(5): 651 doi: 10.1002/adma.200902322
|
[16] |
Tee B C K, Wang C, Allen R, et al. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnol, 2012, 7: 825 doi: 10.1038/nnano.2012.192
|
[17] |
Lipomi D J, Tee B C K, Vosgueritchian M, et al. Stretchable organic solar cells. Adv Mater, 2011, 23(15): 1771 doi: 10.1002/adma.201004426
|
[18] |
Jeon J, Lee H B R, Bao Z N. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv Mater, 2013, 25(6): 850 doi: 10.1002/adma.201204082
|
[19] |
Kim H J, Sim K, Thukral A, et al. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci Adv, 2017, 3(9): art. No. e1701114
|
[20] |
Jin X, Chang X D, Wang W Y, et al. Research progress in flexible wearable strain sensors based on polydimethylsiloxane. J Mater Eng, 2018, 46(11): 13 doi: 10.11868/j.issn.1001-4381.2018.000097金欣, 暢旭東, 王聞宇, 等. 基于聚二甲基硅氧烷柔性可穿戴傳感器研究進展. 材料工程, 2018, 46(11):13 doi: 10.11868/j.issn.1001-4381.2018.000097
|
[21] |
Cai Y C, Huang W, Dong X C. Wearable and flexible electronic strain sensor. Chin Sci Bull, 2017, 62(7): 635 doi: 10.1360/N972015-01445蔡依晨, 黃維, 董曉臣. 可穿戴式柔性電子應變傳感器. 科學通報, 2017, 62(7):635 doi: 10.1360/N972015-01445
|
[22] |
He Y, Zhou Y Y, Liu H, et al. Research progress of flexible pressure sensors based on carbon materials. Chem Ind Eng Prog, 2018, 37(7): 2664何崟, 周藝穎, 劉皓, 等. 基于碳材料的柔性壓力傳感器研究進展. 化工進展, 2018, 37(7):2664
|
[23] |
Luo S, Zhou X, Yang J, et al. The application of carbon nanomaterials in the flexible pressure sensor. J Funct Mater, 2018, 49(8): 08048羅實, 周熙, 楊俊, 等. 碳納米材料在柔性壓力傳感器中的應用. 功能材料, 2018, 49(8):08048
|
[24] |
Clippinger F W, Avery R, Titus B R. A sensory feedback system for an upper-limb amputation prosthesis. Bull Pusthet Res, 1974: 247
|
[25] |
Codd R D, Nightingale J M, Todd R W. An adaptive multi-functional hand prosthesis. J Physiology, 1973, 232(2): 55P
|
[26] |
Zhang C R, Liu W J, Wang L S, et al. Electronic skin patent analysis. China Invent Patent, 2016(3): 26 doi: 10.3969/j.issn.1672-6081.2016.03.006張超然, 劉婉姬, 王立石, 等. 電子皮膚專利分析. 中國發明與專利, 2016(3):26 doi: 10.3969/j.issn.1672-6081.2016.03.006
|
[27] |
Schwartz G, Tee B C K, Mei J G, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Commun, 2013, 4: 1859 doi: 10.1038/ncomms2832
|
[28] |
Moon J H, Baek D H, Choi Y Y, et al. Wearable polyimide–PDMS electrodes for intrabody communication. J Micromech Microeng, 2010, 20(2): 025032 doi: 10.1088/0960-1317/20/2/025032
|
[29] |
Jung H C, Moon J H, Baek D H, et al. CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Trans Biomed Eng, 2012, 59(5): 1472 doi: 10.1109/TBME.2012.2190288
|
[30] |
Chen C Y, Chang C L, Chien T F, et al. Flexible PDMS electrode for one-point wearable wireless bio-potential acquisition. Sens Actuators A, 2013, 203: 20 doi: 10.1016/j.sna.2013.08.010
|
[31] |
Jung J M, Cha D Y, Kim D S, et al. Development of PDMS-based flexible dry type SEMG electrodes by micromachining technologies. Appl Phys A, 2014, 116(3): 1395 doi: 10.1007/s00339-014-8244-3
|
[32] |
Graudejus O, G?rrn P, Wagner S. Controlling the morphology of gold films on poly (dimethylsiloxane). ACS Appl Mater Interfaces, 2010, 2(7): 1927 doi: 10.1021/am1002537
|
[33] |
Adrega T, Lacour S P. Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J Micromech Microeng, 2010, 20(5): art. No. 055025
|
[34] |
Ryu S, Lee P, Chou J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano, 2015, 9(6): 5929 doi: 10.1021/acsnano.5b00599
|
[35] |
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnol, 2011, 6: 296 doi: 10.1038/nnano.2011.36
|
[36] |
Liu N, Chortos A, Lei T, et al. Ultratransparent and stretchable graphene electrodes. Sci Adv, 2017, 3(9): e1700159 doi: 10.1126/sciadv.1700159
|
[37] |
Boland C S, Khan U, Backes C, et al. Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano, 2014, 8(9): 8819 doi: 10.1021/nn503454h
|
[38] |
Wu W Z, Wen X N, Wang Z L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science, 2013, 340(6135): 952 doi: 10.1126/science.1234855
|
[39] |
Sinha S K, Noh Y, Reljin N, et al. Screen-printed PEDOT: PSS electrodes on commercial finished textiles for electrocardiography. ACS Appl Mater Interfaces, 2017, 9(43): 37524 doi: 10.1021/acsami.7b09954
|
[40] |
Hage-Ali S, Tiercelin N, Coquet P, et al. A millimeter-wave inflatable frequency-agile elastomeric antenna. IEEE Antennas Wirel Propag Lett, 2010, 9: 1131 doi: 10.1109/LAWP.2010.2096405
|
[41] |
Zang Y P, Zhang F J, Di C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater Horiz, 2015, 2(2): 140 doi: 10.1039/C4MH00147H
|
[42] |
Bae S H, Lee Y, Sharma B K, et al. Graphene-based transparent strain sensor. Carbon, 2013, 51: 236 doi: 10.1016/j.carbon.2012.08.048
|
[43] |
Chou H H, Nguyen A, Chortos A, et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Commun, 2015, 6: 8011 doi: 10.1038/ncomms9011
|
[44] |
Cai L, Song L, Luan P S, et al. Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep, 2013, 3: 3048 doi: 10.1038/srep03048
|
[45] |
Jeong J W, Kim M K, Cheng H, et al. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv Healthcare Mater, 2014, 3(5): 642 doi: 10.1002/adhm.201300334
|
[46] |
Dargahi J, Najarian S. Human tactile perception as a standard for artificial tactile sensing—a review. Int J Med Rob Comput Assist Surg, 2004, 1(1): 23 doi: 10.1002/rcs.3
|
[47] |
Sun Q J, Seung W, Kim B J, et al. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv Mater, 2015, 27(22): 3411 doi: 10.1002/adma.201500582
|
[48] |
Yun S, Park S, Park B, et al. Polymer-waveguide-based flexible tactile sensor array for dynamic response. Adv Mater, 2014, 26(26): 4474 doi: 10.1002/adma.201305850
|
[49] |
Ramuz M, Tee B C K, Tok J B H, et al. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater, 2012, 24(24): 3223 doi: 10.1002/adma.201200523
|
[50] |
Wagner S, Bauer S. Materials for stretchable electronics. MRS Bull, 2012, 37(3): 207 doi: 10.1557/mrs.2012.37
|
[51] |
Yao S S, Zhu Y. Stretchable conductors: nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv Mater, 2015, 27(9): 1479 doi: 10.1002/adma.201570061
|
[52] |
Yan C Y, Lee P S. Stretchable energy storage and conversion devices. Small, 2014, 10(17): 3443 doi: 10.1002/smll.201302806
|
[53] |
Lipomi D J, Bao Z N. Stretchable and ultraflexible organic electronics. MRS Bull, 2017, 42(2): 93 doi: 10.1557/mrs.2016.325
|
[54] |
Matsuhisa N, Kaltenbrunner M, Yokota T, et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nature Commun, 2015, 6: 7461 doi: 10.1038/ncomms8461
|
[55] |
Tybrandt K, V?r?s J. Fast and efficient fabrication of intrinsically stretchable multilayer circuit boards by wax pattern assisted filtration. Small, 2016, 12(2): 180 doi: 10.1002/smll.201502849
|
[56] |
Wang Y, Zhu C X, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv, 2017, 3(3): art. No. e1602076
|
[57] |
Kim H, Ahn J H. Graphene for flexible and wearable device applications. Carbon, 2017, 120: 244 doi: 10.1016/j.carbon.2017.05.041
|
[58] |
Wang S H, Xu J, Wang W C, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555(7694): 83 doi: 10.1038/nature25494
|
[59] |
Poland C A, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnol, 2008, 3: 423 doi: 10.1038/nnano.2008.111
|
[60] |
Pantarotto D, Briand J P, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun, 2004(1): 16 doi: 10.1039/b311254c
|
[61] |
Boutry C M, Kaizawa Y, Schroeder B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nature Electron, 2018, 1: 314 doi: 10.1038/s41928-018-0071-7
|
[62] |
Chen G, Matsuhisa N, Liu Z Y, et al. Plasticizing silk protein for on-skin stretchable electrodes. Adv Mater, 2018, 30(21): art. No. e1800129
|
[63] |
Kim S H, Seo H, Kang J, et al. An ultrastretchable and self-healable nanocomposite conductor enabled by autonomously percolative electrical pathways. ACS Nano, 2019, 13(6): 6531 doi: 10.1021/acsnano.9b00160
|
[64] |
Lipomi D J, Chong H, Vosgueritchian M, et al. Toward mechanically robust and intrinsically stretchable organic solar cells: evolution of photovoltaic properties with tensile strain. Sol Energy Mater Sol Cells, 2012, 107: 355 doi: 10.1016/j.solmat.2012.07.013
|
[65] |
Han S, Kim J, Won S M, et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci Transl Med, 2018, 10(435): art. No. eaan4950
|
[66] |
Kim D H, Lu N S, Ma R, et al. Epidermal electronics. Science, 2011, 333(6044): 838 doi: 10.1126/science.1206157
|
[67] |
Hua Q L, Sun J L, Liu H T, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nature Commun, 2018, 9: 244 doi: 10.1038/s41467-017-02685-9
|
[68] |
Molina-Lopez F, Gao T Z, Kraft U, et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nature Commun, 2019, 10: 2676 doi: 10.1038/s41467-019-10569-3
|