<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

陡脈沖干擾下的心電信號濾波及QRS提取

姚晰童 代煜 張建勛 葛錦濤 陳通 楊灝

姚晰童, 代煜, 張建勛, 葛錦濤, 陳通, 楊灝. 陡脈沖干擾下的心電信號濾波及QRS提取[J]. 工程科學學報, 2020, 42(5): 654-662. doi: 10.13374/j.issn2095-9389.2019.06.20.004
引用本文: 姚晰童, 代煜, 張建勛, 葛錦濤, 陳通, 楊灝. 陡脈沖干擾下的心電信號濾波及QRS提取[J]. 工程科學學報, 2020, 42(5): 654-662. doi: 10.13374/j.issn2095-9389.2019.06.20.004
YAO Xi-tong, DAI Yu, ZHANG Jian-xun, GE Jin-tao, CHEN Tong, YANG Hao. ECG filtering and QRS extraction under steep pulse interference[J]. Chinese Journal of Engineering, 2020, 42(5): 654-662. doi: 10.13374/j.issn2095-9389.2019.06.20.004
Citation: YAO Xi-tong, DAI Yu, ZHANG Jian-xun, GE Jin-tao, CHEN Tong, YANG Hao. ECG filtering and QRS extraction under steep pulse interference[J]. Chinese Journal of Engineering, 2020, 42(5): 654-662. doi: 10.13374/j.issn2095-9389.2019.06.20.004

陡脈沖干擾下的心電信號濾波及QRS提取

doi: 10.13374/j.issn2095-9389.2019.06.20.004
基金項目: 國家重點研發計劃資助項目(2017YFC0110402);天津市自然科學基金項目資助項目(18JCYBJC18800)
詳細信息
    通訊作者:

    E-mail:daiyu@nankai.edu.cn

  • 中圖分類號: TN911.72

ECG filtering and QRS extraction under steep pulse interference

More Information
  • 摘要: 為消除陡脈沖帶來的干擾,分析了陡脈沖干擾的特點,建立了陡脈沖噪聲數學模型,提出了基于變分模態分解(Variational mode decomposition, VMD)的心電信號濾波算法,提取疊加在心電信號中陡脈沖干擾分量、識別陡脈沖干擾分量并剔除陡脈沖干擾分量;為減少VMD分解層數、提高實時性并減少內存消耗,提出了心電信號預處理算法;針對醫療環境中的隨機噪聲伴隨陡脈沖出現的情況,分析了VMD后子信號中隨機噪聲的特點,提出了基于VMD子信號能量估計的閾值去噪算法;利用變分模態分解的帶通濾波器組特性,提出了基于變分模態分解子信號重組的QRS波群檢測算法,配合濾波算法以提高心電信號特征檢測精度。以添加了高斯白噪聲和模擬陡脈沖干擾的MIT?BIH數據庫心電信號和醫療環境中采集的心電信號為實驗對象,分別實現對濾波算法和QRS波群檢測算法的定量對比分析。

     

  • 圖  1  受陡脈沖干擾的ECG。(a)受到陡脈沖干擾的心電信號;(b)未受陡脈沖干擾的心電信號

    Figure  1.  ECG disturbed by steep pulses: (a) ECG disturbed by steep pulses; (b) ECG not disturbed by steep pulses

    圖  2  衰減模型單邊幅頻圖

    Figure  2.  Diagram of a single-sided amplitude–frequency attenuation model

    圖  3  VMD 6階分解子信號。(a)原信號;(b)u1;(c)u2;(d)u3;(e)u4;(f)u5;(g)u6

    Figure  3.  Use of VMD to divide the signal into six layers: (a) original signal; (b) u1; (c) u2; (d) u3; (e) u4; (f) u5; (g) u6

    圖  4  u2中干擾分量消除效果。(a) 閾值處理前;(b) 閾值處理后

    Figure  4.  Interference component elimination effect in u2: (a) before using thresholds; (b) after using thresholds

    圖  5  消除隨機噪聲分量之后的子信號。(a) u4;(b) u5

    Figure  5.  Sub-signal after eliminating random noise components: (a) u4; (b) u5

    圖  6  R波檢測的算法驗證。(a) 原信號;(b) 重組的QRS;(c) R波增強

    Figure  6.  Verification of the R-wave detection algorithm: (a) original signal; (b) restructured QRS wave; (c) enhanced R wave

    圖  7  R波檢測的算法流程圖

    Figure  7.  Flowchart of the R-wave detection algorithm

    圖  8  實驗設備展示。(a) 不可逆電消融樣機;(b) 心電信號采集板

    Figure  8.  Experimental equipment: (a) prototype of irreversible electrical pulse ablation surgery; (b) ECG signal sampling circuit

    圖  9  信號預處理效果對比

    Figure  9.  Effect of signal preprocessing interference

    圖  10  對分解層數和懲罰因子進行驗證

    Figure  10.  Values of K and quadratic penalty were verified through experiments

    圖  11  施放陡脈沖期間相關噪聲抑制。(a) 陡脈沖干擾消除前;(b) 消除陡脈沖干擾后支;(c) 完全消除陡脈沖干擾

    Figure  11.  Result of eliminating steep pulse interference: (a) ECG disturbed by steep pulses; (b) forehead is retained; (c) fore branches are eliminated

    圖  12  陡脈沖干擾抑制效果對比。(a) 本文提出算法效果;(b) 小波算法效果;(c) 帶阻濾波器算法效果

    Figure  12.  Comparison of the results of steep pulse noise filtering: (a) algorithm in this article; (b) wavelet algorithm; (c) bandpass filter

    圖  13  ab最優值驗證。(a) b恒定a改變;(b) a恒定b改變

    Figure  13.  Verification of the optimal values of a and b: (a) when b is constant and a is changed; (b) when a is constant and b is changed

    表  1  陡脈沖干擾消除效果對比

    Table  1.   Results obtained after a variety of filtering processes

    SNR of the original signal/dBBandpass filter(SNR)/dBWavelet packet filter(SNR)/dBAlgorithm of this paper(SNR)/dB
    1.481?5.3690.1998.022
    ?6.732?11.456?8.7103.070
    ?12.110?18.928?13.913?0.410
    下載: 導出CSV

    表  2  去噪效果對比

    Table  2.   Comparison of the results of the filtering processes

    AlgorithmSNR between ECG and random noise /dB
    Random noise SNR=1 dBRandom noise SNR=3 dBRandom noise SNR=8 dBRandom noise SNR=10 dB
    Wavelet[8]7.1218.11611.65915.227
    EMD[9]6.1298.90012.38714.981
    This paper8.03910.12214.64920.836
    下載: 導出CSV

    表  3  與常用算法準確度對比

    Table  3.   Comparison of the accuracy of the algorithms

    Algorithm$ {N}_{{\rm{t}}{\rm{o}}{\rm{t}}{\rm{a}}{\rm{l}}} $TPFPFNED/%SE/%
    Difference threshold algorithm[20]1621814157765129612.71091.61
    Bandpass filter algorithm[21]151383777036.65995.56
    Algorithm in this article157413601172.94299.23
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Prausnitz M R, Bose V G, Langer R, et al. Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci USA, 1993, 90(22): 10504 doi: 10.1073/pnas.90.22.10504
    [2] Lü D H, Zhang J X, Dai Y. Analysis and compensation of stray parameters in high-voltage pulse generator circuits. Chin J Eng, 2016, 38(5): 734

    呂東澔, 張建勛, 代煜. 陡脈沖發生器電路中雜散參數的分析和補償. 工程科學學報, 2016, 38(5):734
    [3] Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand, 2003, 177(4): 437 doi: 10.1046/j.1365-201X.2003.01093.x
    [4] Jin S L, Wang Y, Yin Y G. Effect of high intensity pulsed electric field pretreatment on elasticity of starch-myofibril protein mixed gelatin. J Jilin Univ Eng Technol Ed, 2014, 44(2): 573

    金聲瑯, 王瑩, 殷涌光. 高壓脈沖電場對淀粉和肌原纖維蛋白混合凝膠強度的影響. 吉林大學學報: 工學版, 2014, 44(2):573
    [5] Feng X Q, Wang Y H, Xu F X. Advances on application of high voltage pulsed electric field in food quality and safety. J Food Sci Biotechnol, 2013, 32(4): 337 doi: 10.3969/j.issn.1673-1689.2013.04.001

    馮敘橋, 王月華, 徐方旭. 高壓脈沖電場技術在食品質量與安全中的應用進展. 食品與生物技術學報, 2013, 32(4):337 doi: 10.3969/j.issn.1673-1689.2013.04.001
    [6] Maor E, Ivorra A, Leor J, et al. The effect of irreversible electroporation on blood vessels. Technol Cancer Res Treat, 2007, 6(4): 307 doi: 10.1177/153303460700600407
    [7] Zhang R Y, Fang X, Liu Y Q, et al. Design of a real-time ECG filter for resource constraint computer // 2012 International Conference on Information and Automation (ICIA). Shenyang, 2012: 846
    [8] Wang L, Sun W, Chen Y B, et al. ECG denoising method based on adaptive wavelet threshold selection. Comput Eng Appl, 2018, 54(15): 29 doi: 10.3778/j.issn.1002-8331.1805-0352

    王磊, 孫瑋, 陳奕博, 等. 基于自適應小波閾值的心電信號降噪方法. 計算機工程與應用, 2018, 54(15):29 doi: 10.3778/j.issn.1002-8331.1805-0352
    [9] Tan X, Chen X X, Hu X Y, et al. EMD-based electrocardiogram delineation for a wearable low-power ECG monitoring device. Can J Electr Comput Eng, 2014, 37(4): 212 doi: 10.1109/CJECE.2014.2316852
    [10] Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Trans Signal Process, 2014, 62(3): 531 doi: 10.1109/TSP.2013.2288675
    [11] Chen S, Guo M Z, Zhang J X. Design and realization of high-voltage steep pulse generator. Autom Instrum, 2019, 34(2): 5 doi: 10.3969/j.issn.1001-9944.2019.02.002

    陳穗, 郭蒙召, 張建勛. 高壓陡脈沖發生器的設計與實現. 自動化與儀表, 2019, 34(2):5 doi: 10.3969/j.issn.1001-9944.2019.02.002
    [12] Wang Y X, Markert R. Filter bank property of variational mode decomposition and its applications. Signal Process, 2016, 120: 509 doi: 10.1016/j.sigpro.2015.09.041
    [13] Zhang D, Feng Z P. Fault diagnosis of rolling bearings based on variational mode decomposition and calculus enhanced energy operator. Chin J Eng, 2016, 38(9): 1327

    張東, 馮志鵬. 基于變分模式分解和微積分增強能量算子的滾動軸承故障診斷. 工程科學學報, 2016, 38(9):1327
    [14] Xue Y J, Cao J X, Wang D X, et al. Application of the variational-mode decomposition for seismic time-frequency analysis. IEEE J Selected Topics Appl Earth Observ Remote Sens, 2016, 9(8): 3821 doi: 10.1109/JSTARS.2016.2529702
    [15] Liu Y Y, Yang G L, Li M, et al. Variational mode decomposition denoising combined the detrended fluctuation analysis. Signal Process, 2016, 125: 349 doi: 10.1016/j.sigpro.2016.02.011
    [16] Cao X W, Deng Q K. Frequency analysis on the ECG waveform. Chin J Med Phys, 2001, 18(1): 46 doi: 10.3969/j.issn.1005-202X.2001.01.021

    曹細武, 鄧親愷. 心電圖各波的頻率分析. 中國醫學物理學雜志, 2001, 18(1):46 doi: 10.3969/j.issn.1005-202X.2001.01.021
    [17] Lu Y L, Wang R, Hu M L, et al. Development of wearable ECG and SCG monitoring system. Beijing Biomed Eng, 2018, 37(4): 381 doi: 10.3969/j.issn.1002-3208.2018.04.009.

    魯亞磊, 王瑞, 胡敏露, 等. 穿戴式心電及心振信號監測系統的研制. 北京生物醫學工程, 2018, 37(4):381 doi: 10.3969/j.issn.1002-3208.2018.04.009.
    [18] Kopsinis Y, McLaughlin S. Development of EMD-based denoising methods inspired by wavelet thresholding. IEEE Trans signal Process, 2009, 57(4): 1351 doi: 10.1109/TSP.2009.2013885
    [19] Hamilton P S, Tompkins W J. Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans Biomed Eng, 1986, 33(12): 1157
    [20] Liu Z D, Chen J, Tang M F. Pulse transit time detection based on waveform time domain feature and dynamic difference threshold. J Biomed Eng, 2017, 34(3): 329

    劉增丁, 陳驥, 湯敏芳. 基于波形時域特征和動態差分閾值的脈搏波傳導時間檢測算法. 生物醫學工程學雜志, 2017, 34(3):329
    [21] Pan J P, Tompkins W J. A real-time QRS detection algorithm. IEEE Trans Biomed Eng, 1985, 32(3): 230
  • 加載中
圖(13) / 表(3)
計量
  • 文章訪問數:  2039
  • HTML全文瀏覽量:  1861
  • PDF下載量:  55
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-06-20
  • 刊出日期:  2020-05-01

目錄

    /

    返回文章
    返回