[1] |
Saunders S. Free 3D systems whitepaper discusses scalable, digital molding process and figure 43D printing[EB/OL]. 3DR Holdings (2018-09-27)[2020-03-23]. https://3dprint.com/225981/digital-molding-whitepaper/
|
[2] |
Ritt S. Trends in metal additive manufacturing: fast and big[EB/OL]. WTWH Media (2013-12-09)[2020-03-23]. https://www.makepartsfast.com/trends-metal-additive-manufacturing-fast-big/
|
[3] |
Chang Y C, Pinilla J M, Kao J H, et al. Automated layer decomposition for additive/subtractive solid freeform fabrication // 1999 International Solid Freeform Fabrication Symposium. Austin, 1999: 111
|
[4] |
Du W, Bai Q, Zhang B. A novel method for additive/subtractive hybrid manufacturing of metallic parts. Procedia Manuf, 2016, 5: 1018 doi: 10.1016/j.promfg.2016.08.067
|
[5] |
Zhang H O, Huang C, Li R S, et al. A super short-process green manufacturing method and energy consumption analysis of micro casting forging and milling for high performance parts. China Mech Eng, 2018, 29(21): 2553張海鷗, 黃丞, 李潤聲, 等. 高端金屬零件微鑄鍛銑復合超短流程綠色制造方法及其能耗分析. 中國機械工程, 2018, 29(21):2553
|
[6] |
Akula S, Karunakaran K P. Hybrid adaptive layer manufacturing: an intelligent art of direct metal rapid tooling process. Robot Comput-Integr Manuf, 2006, 22(2): 113 doi: 10.1016/j.rcim.2005.02.006
|
[7] |
Karunakaran K P, Suryakumar S, Pushpa V, et al. Retrofitment of a CNC machine for hybrid layered manufacturing. Int J Adv Manuf Technol, 2009, 45(7): 690
|
[8] |
Sreenathbabu A, Karunakaran K P, Amarnath C. Statistical process design for hybrid adaptive layer manufacturing. Rapid Prototyping J, 2005, 11(4): 235 doi: 10.1108/13552540510612929
|
[9] |
Song Y A, Park S, Choi D, et al. 3D welding and milling: Part I-a direct approach for freeform fabrication of metallic prototypes. Int J Mach Tools Manuf, 2005, 45(9): 1057 doi: 10.1016/j.ijmachtools.2004.11.021
|
[10] |
Song Y A, Park S, Chae S W. 3D welding and milling: Part II - Optimization of the 3D welding process using an experimental design approach. Int J Mach Tools Manuf, 2005, 45(9): 1063 doi: 10.1016/j.ijmachtools.2004.11.022
|
[11] |
Kerschbaumer M, Ernst G. Hybrid manufacturing process for rapid high performance tooling combining high speed milling and laser cladding // Proceedings of the 23rd International Congress on Applications of Lasers & Electro-Optics. Orlando, 2004: 1710
|
[12] |
Jeng J Y, Lin M C. Mold fabrication and modification using hybrid processes of selective laser cladding and milling. J Mater Process Technol, 2001, 110(1): 98 doi: 10.1016/S0924-0136(00)00850-5
|
[13] |
Yasa E, Kruth J P, Deckers J. Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting. CIRP Annals, 2011, 60(1): 263 doi: 10.1016/j.cirp.2011.03.063
|
[14] |
Bai Q, Dong Z G, Yan Y, et al. Development of additive / subtractive hybrid manufacturing practical teaching platform for full-time master of engineering students. Lab Sci, 2018, 21(2): 158白倩, 董志剛, 閆英, 等. 金屬增減材復合制造專業碩士實踐教學平臺建設. 實驗室科學, 2018, 21(2):158
|
[15] |
Li Q Y, Li D C. Zhang A F, et al. Development and challenges of laser cladding deposition and machining composite manufacturing technology // Proceedings of the 17th National Special Processing Conference (Abstract). Guangzhou, 2017: 194李青宇, 李滌塵, 張安峰, 等. 激光熔覆沉積與切削加工復合制造技術的發展與挑戰// 第17屆全國特種加工學術會議論文集(摘要). 廣州, 2017: 194
|
[16] |
Zhang J T, Zhang W, Li Y J, et al. Laser deposition additive/subtractive hybrid manufacturing process for stainless steel powder based on DMG MORI LASERTEC 653D. Mater Sci Eng Powder Metall, 2018, 23(4): 368張軍濤, 張偉, 李宇佳, 等. 基于DMG MORI LASERTEC 653D加工中心的不銹鋼粉末激光沉積增/減材復合制造. 粉末冶金材料科學與工程, 2018, 23(4):368
|
[17] |
L?ber L, Flache C, Petters R, et al. Comparison of different post processing technologies for SLM generated 316L steel parts. Rapid Prototyping J, 2013, 19(3): 173 doi: 10.1108/13552541311312166
|
[18] |
Rossi S, Deflorian F, Venturini F. Improvement of surface finishing and corrosion resistance of prototypes produced by direct metal laser sintering. J Mater Process Technol, 2004, 148(3): 301 doi: 10.1016/j.jmatprotec.2003.02.001
|
[19] |
Beaucamp A T, Namba Y, Charlton P, et al. Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG). Surf Topography:Metrology Prop, 2015, 3(2): 024001 doi: 10.1088/2051-672X/3/2/024001
|
[20] |
Sitthi-Amorn P, Ramos J E, Wangy Y, et al. MultiFab: a machine vision assisted platform for multi-material 3D printing. ACM Trans Graph, 2015, 34(4): 129
|
[21] |
Xiong X H, Zhang H O, Wang G L. Metal direct prototyping by using hybrid plasma deposition and milling. J Mater Process Technol, 2009, 209(1): 124 doi: 10.1016/j.jmatprotec.2008.01.059
|
[22] |
Zhu Z, Dhokia V G, Nassehi A, et al. A review of hybrid manufacturing processes - State of the art and future perspectives. Int J Comput Integr Manuf, 2013, 26(7): 596 doi: 10.1080/0951192X.2012.749530
|
[23] |
Hehr A, Wenning J, Terrani K, et al. Five-axis ultrasonic additive manufacturing for nuclear component manufacture. JOM, 2017, 69(3): 485 doi: 10.1007/s11837-016-2205-6
|
[24] |
Peat T, Galloway A, Toumpis A, et al. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing. Appl Surf Sci, 2017, 396: 1635 doi: 10.1016/j.apsusc.2016.10.156
|
[25] |
Courbon C, Sova A, Valiorgue F, et al. Near surface transformations of stainless steel cold spray and laser cladding deposits after turning and ball-burnishing. Surf Coat Technol, 2019, 371: 235 doi: 10.1016/j.surfcoat.2019.01.092
|
[26] |
Flynn J M, Shokrani A, Newman S T, et al. Hybrid additive and subtractive machine tools-Research and industrial developments. Int J Mach Tools Manuf, 2016, 101: 79 doi: 10.1016/j.ijmachtools.2015.11.007
|
[27] |
Eiamsa-Ard K, Nair H J, Ren L, et al. Part repair using a hybrid manufacturing system // Proceedings of the Sixteenth Annual Solid Freeform Fabrication Symposium. Austin, 2005: 1
|
[28] |
Le V T, Paris H, Mandil G. Process planning for combined additive and subtractive manufacturing technologies in a remanufacturing context. J Manuf Syst, 2017, 44: 243 doi: 10.1016/j.jmsy.2017.06.003
|
[29] |
Kulkarni P, Marsan A, Dutta D. A review of process planning techniques in layered manufacturing. Rapid Prototyping J, 2000, 6(1): 18 doi: 10.1108/13552540010309859
|
[30] |
Zhang J, Liou F. Adaptive slicing for a multi-axis laser aided manufacturing process. J Mech Des, 2004, 126(2): 254 doi: 10.1115/1.1649966
|
[31] |
Ruan J Z, Zhang J, Liou F. Selection of part orientation for multi-axis hybrid manufacturing process // ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. San Diego, 2010: 587
|
[32] |
Kerbrat O, Mognol P, Hasco?t J Y. A new DFM approach to combine machining and additive manufacturing. Comput Ind, 2011, 62(7): 684 doi: 10.1016/j.compind.2011.04.003
|
[33] |
Joshi A, Anand S. Geometric complexity based process selection for hybrid manufacturing. Procedia Manuf, 2017, 10: 578 doi: 10.1016/j.promfg.2017.07.056
|
[34] |
Ren L, Eiamsa-ard K, Ruan J Z, et al. Part repairing using a hybrid manufacturing system// ASME 2007 International Manufacturing Science and Engineering Conference. Atlanta, 2007: MSEC2007-31003
|
[35] |
Manogharan G, Wysk R, Harrysson O, et al. AIMS - a metal additive-hybrid manufacturing system: system architecture and attributes. Procedia Manuf, 2015, 1: 273 doi: 10.1016/j.promfg.2015.09.021
|
[36] |
Newman S T, Zhu Z C, Dhokia V, et al. Process planning for additive and subtractive manufacturing technologies. CIRP Annals, 2015, 64(1): 467 doi: 10.1016/j.cirp.2015.04.109
|
[37] |
Zhu Z C, Dhokia V, Newman S T. The development of a novel process planning algorithm for an unconstrained hybrid manufacturing process. J Manuf Processes, 2013, 15(4): 404 doi: 10.1016/j.jmapro.2013.06.006
|
[38] |
Ranjan R, Samant R, Anand S. Design for manufacturability in additive manufacturing using a graph based approach // ASME 2015 International Manufacturing Science and Engineering Conference. Charlotte, 2015: MSEC2015-9448
|
[39] |
Ranjan R, Samant R, Anand S. Integration of design for manufacturing methods with topology optimization in additive manufacturing. J Manuf Sci Eng, 2017, 139(6): 061007 doi: 10.1115/1.4035216
|
[40] |
Lutter-Günther M, Wagner S, Seidel C, et al. Economic and ecological evaluation of hybrid additive manufacturing technologies based on the combination of laser metal deposition and CNC machining. Appl Mech Mater, 2015, 805: 213 doi: 10.4028/www.scientific.net/AMM.805.213
|