<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于物理信息神經網絡的鋰離子電池溫度預測研究

Experimental study on large-rate discharge immersion cooling system of pouch battery pack

  • 摘要: 準確的溫度監測對電動汽車、機器人及儲能系統中動力電池的熱安全管理至關重要。針對現有傳感器與電熱建模技術難以快速獲取大尺寸電池整體溫度分布的問題,本文提出一種基于物理信息神經網絡(PINN)的電池溫度場建模方法。該模型融合電池熱建模與深度學習技術,實現無溫度傳感器工況下電池系統時空溫度分布的實時監測。關鍵創新之處在于基于實驗數據構建電池物理模型,耦合電池產熱率方程與數據驅動的非線性映射,增強了預測精度,一個訓練良好的模型可以用不使用傳感器預測整個電池內的溫度分布。實驗結果表明,在不同的恒流充放電與隨機電流動態工況下,該模型溫度預測的最大均方根誤差(RMSE)與平均絕對誤差(MAE)均低于0.9 ℃。相較于傳統方法,本模型在有限訓練數據條件下顯著提升預測精度與可解釋性,為電池管理系統提供高精度溫度分布依據,對熱安全策略制定具有重要應用價值。

     

    Abstract: Accurate Accurate temperature monitoring is crucial for ensuring the thermal safety and performance of lithium-ion batteries (LIBs), which are extensively used in electric vehicles, robotics, and energy storage systems. The optimal operating temperature for LIBs is strictly confined between 20°C and 40°C. Temperatures outside this range can lead to performance degradation, capacity loss, accelerated aging, or even thermal runaway. Conventional methods, such as sensor-based measurements and electrothermal modeling, face challenges in providing rapid and comprehensive temperature distribution data for large-format batteries due to spatial and cost limitations, which hinder sensor deployment. To address these challenges, this study introduces a novel temperature field modeling and reconstruction approach for ternary lithium batteries using Physics-Informed Neural Networks (PINNs). This method integrates battery thermal modeling with deep learning techniques, enabling real-time, sensor-free monitoring of spatiotemporal temperature distributions within the battery system.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164