<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

改進DDPG的磁浮控制研究

Research on magnetic levitation control algorithm based on improved DDPG

  • 摘要: 針對傳統磁浮控制算法依賴精確模型、適應性差的問題,提出一種基于強化學習的IDDPG (Improvement Deep Deterministic Policy Gradient)控制方法。首先,搭建電磁懸浮系統數學模型并分析其動態特性。其次,針對傳統DDPG算法在電磁懸浮控制中的不足,設計一種分段式反比例獎勵函數,以提升穩態精度和響應速度,并對DDPG控制流程進行分析及優化,以滿足實際部署需求。最后,通過仿真與實驗,對比分析電流環跟蹤、獎勵函數、訓練步長以及模型變化對控制性能的影響。結果表明:采用分段式反比例獎勵函數的IDDPG控制器在降低穩態誤差和超調的同時,顯著提升了系統的響應速度,且優化后的控制流程適用于實際系統部署。此外,在不同模型下使用相同參數時仍能取得基本一致的控制效果,驗證了IDDPG在不依賴精確模型情況下的良好適應性。

     

    Abstract: To address the limitations of traditional magnetic levitation control algorithms, which often rely on precise mathematical models and exhibit poor adaptability, this paper proposes an improved deep deterministic policy gradient (IDDPG) controller based on reinforcement learning. A mathematical model of the electromagnetic levitation system is first established, and its dynamic characteristics are analyzed. To enhance the conventional DDPG algorithm’s applicability in maglev control, a segmented inverse proportional reward function is designed to improve steady-state accuracy and response speed. The control framework is further optimized to meet real-time deployment requirements. Comprehensive simulations and experiments are conducted to evaluate the impact of current loop tracking, reward function design, training step size, and model variations on control performance. Results demonstrate that the proposed IDDPG controller significantly enhances system response speed while reducing steady-state error and overshoot,and the optimized control flow is suitable for real system deployment. Moreover, it maintains consistent control performance across varying system models, confirming its robustness and adaptability without reliance on exact model knowledge.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164