<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

結合三維重建與機器學習預測上頜中切牙寬度的研究

Research on Predicting Maxillary Central Incisor Width by Combining 3D Reconstruction and Machine Learning

  • 摘要: 傳統人類學測量在微笑美學臨床實踐中存在主觀誤差問題。本研究提出了一種包含三維面部標志點自動檢測、雙目三維重建、WGAN-GP數據增強、回歸模型分析的上頜中切牙寬度智能預測技術體系。通過200例三維面部掃描數據,建立了包含ICW、IAW等5項關鍵解剖參數的特征空間,創新性地將Wasserstein生成對抗網絡與梯度懲罰機制引入,有效解決了小樣本條件下的模型泛化難題。系統比較了MLP、GBR等五種回歸算法的性能差異,其中梯度提升回歸(GBR)在測試集上達到0.9446的決定系數,預測誤差(RMSE=0.1238 mm)較傳統方法降低73.4%,而多層感知器(MLP)展現出最佳的泛化穩定性(測試集R2=0.9691)。本方法通過三維特征空間映射與集成學習策略,實現了亞毫米級預測精度(0.092-0.171 mm),建議臨床采用MLP-GBR混合模型架構,為數字化微笑設計提供了可解釋性強、臨床適配度高的智能決策模型。

     

    Abstract: Traditional anthropometric measurements in clinical smile aesthetics practice are prone to subjective errors. This study proposes an intelligent prediction system for maxillary central incisor width, integrating automated 3D facial landmark detection, binocular 3D reconstruction, WGAN-GP data augmentation, and regression model analysis. Using 200 cases of 3D facial scan data, we established a feature space incorporating five key anatomical parameters including ICW and IAW. The innovative integration of Wasserstein Generative Adversarial Networks with gradient penalty mechanism effectively addressed model generalization challenges under small-sample conditions.A systematic comparison of five regression algorithms revealed that Gradient Boosting Regression (GBR) achieved a coefficient of determination (R2) of 0.9446 on the test set, with prediction error (RMSE=0.1238 mm) reduced by 73.4% compared to traditional methods, while Multilayer Perceptron (MLP) demonstrated superior generalization stability (test set R2=0.9691). Our method achieves submillimeter-level prediction accuracy (0.092-0.171 mm) through 3D feature space mapping and ensemble learning strategies. We recommend the clinical adoption of the MLP-GBR hybrid model architecture, which provides an intelligent decision-making model with strong interpretability and clinical adaptability for digital smile design.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164