<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于多組分非牛頓流體混合模型的血流模擬

Simulation of blood flow based on a multicomponent non-Newtonian fluid mixing model

  • 摘要: 可視化人體內血液流動特性對精準診斷心血管疾病、解析病理機制及優化治療方案至關重要。然而,傳統醫療手段難以直接觀測血液流動狀態,且對血液成分耦合效應的量化評估不足。為此,本文提出一種基于多組分非牛頓流體混合模型的血流模擬方法。首先,基于Walburn-Schneck模型描述非牛頓流體表觀粘度;其次,通過引入體積分數,將Walburn-Schneck粘度模型拓展至多組分應用場景,準確模擬了不同組分間的交互作用機制,實現了多組分非牛頓流體延展和流動效果的準確模擬;最后,構建血管壁處固-液作用力模型,采用改進的光滑粒子流體動力學方法對壁面剪應力和粘附力進行建模,修正了壁面附近粒子截斷對流固邊界附近流體模擬的計算誤差。實驗結果表明,本文方法可有效捕捉非牛頓流體的剪切速率依賴性及多組分混合擴散行為,較傳統模型能更真實地還原復雜血管結構中的血液流動狀態。研究成果為數智化診療提供了新的技術路徑,有望輔助深化理解血流動力學異常相關病理機制。

     

    Abstract: Visualization the characteristics of blood flow in the human body is essential for accurate diagnosis of cardiovascular diseases, analysis of pathological mechanisms and optimization of treatment options. However, traditional medical methods struggle to directly observe blood flow states and the quantitative assessment of the coupling effect of blood components is insufficient. In this paper, we propose a blood flow simulation method based on a multi-component non-Newtonian fluid mixing model. Firstly, the Walburn-Schneck model is employed to describe the viscosity of non-Newtonian fluids; secondly, by introducing volume fractions, the Walburn-Schneck model is extended to multi-component application scenarios, which accurately simulates the interaction mechanism between different components and achieves the accurate extension and flow effects simulation of multi-component non-Newtonian fluids; finally, a solid-liquid interaction force model at the blood vessel wall is constructed, and the improved solid-liquid interaction force model is used. Finally, the solid-liquid force model is constructed at the vessel wall, and an improved smoothed particle hydrodynamics (SPH) method is used to model wall shear stress and adhesive forces, correcting calculation errors in fluid simulation near the fluid-solid boundary caused by particle truncation. The experimental results show that the method can effectively capture the shear rate dependence of non-Newtonian fluids and the mixing-diffusion behavior of multi-components, restoring blood flow states in complex vascular structures better than traditional models. The research results provide a new technical pathway for digital and intelligent medical diagnosis, holding promise to assist in deepening the understanding of pathological mechanisms related to hemodynamic abnormalities.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164