<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于堆疊集成學習混合方法的鋼纖維混凝土抗壓強度預測與應用

Prediction and Application of the Steel-Fibre-Reinforced Concrete Compressive Strength: Hybrid Methods with Stacking Ensemble Learning

  • 摘要: 隨著現代工程對材料性能要求不斷提高,鋼纖維混凝土(SFRC)作為一種具有優異力學性能和耐久性的復合材料,在工程中得到了廣泛的應用。鋼纖維混凝土的抗壓強度,特別是單軸抗壓強度,是衡量其性能的關鍵指標。通過室內試驗對鋼纖維混凝土的強度進行測試,往往需要花費大量的人力物力,且養護周期較長。基于此,提出了一種基于堆疊集成學習的鋼纖維混凝土抗壓強度預測模型。基于收集到的211組不同的鋼纖維混凝土配合比數據,選用SVM、DT、KNN、RF和BP 5種單一模型進行堆疊集成學習。同時,使用6種優化算法對5種單一模型進行優化,最終得到OP-Stacking混合模型。使用OP-Stacking混合模型對鋼纖維混凝土7天抗壓強度進行預測,MSE和R2分別為86.9167和0.9398,均優于其他5種單一模型。同時,將鋼纖維混凝土7天、28天的抗壓強度進行線性擬合,得到了7天、28天強度的經驗公式。最后,將OP-Stacking混合模型與7天、28天強度經驗公式進行了封裝,建立了鋼纖維混凝土強度預測系統和智能配比設計,為滇中引水工程新型支護設計快速施工提供了重要支持。

     

    Abstract: As modern engineering has increasingly high requirements for material performance, steel-fibre-reinforced concrete (SFRC), as a composite material with excellent mechanical properties and durability, has been widely used in engineering. The compressive strength of SFRC, especially the uniaxial compressive strength (UCS), is a key indicator of its performance. Testing the strength of SFRC through indoor tests often requires a lot of manpower and material resources and has a long maintenance period. On this basis, this study proposed an SFRC compressive strength prediction model based on stacking ensemble learning. Using 211 collected sets of different SFRC mix proportion data, five single models were selected for stacking ensemble learning: support vector machine (SVM), decision tree (DT), K-nearest neighbor (KNN), random forest (RF) and back propagation neural network (BP). Moreover, six optimization algorithms were used to optimize the five single models. Then, the OP-Stacking hybrid model was obtained and used to predict the 7-day compressive strength of the SFRC, with MSE and R2 values of 86.9167 and 0.9398, respectively, which are better than those of the other five single models. The compressive strengths of SFRC at 7 days and 28 days were linearly fitted, and empirical formulas for the 7-day and 28-day strengths were obtained. Finally, the OP-Stacking hybrid model was encapsulated with 7-day and 28-day strength empirical formulas to establish an SFRC strength prediction system and the intelligent proportioning design, providing important support for the rapid construction of the new support design of the Central Yunnan Water Diversion Project.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164