<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

工業智能系統前沿征稿+基于Lasso回歸稀疏多項式混沌展開的配電網風險評估

Risk assessment of distribution network based on sparse polynomial chaos expansion with Lasso regression

  • 摘要: 在能源低碳化轉型背景下,針對高新能源占比配電網風險評估中存在的潮流不確定性表征及量化問題,提出了一種基于Lasso回歸稀疏多項式混沌展開的配電網風險評估方法。通過引入多項式混沌展開理論,建立輸入與響應的代理模型替代傳統隨機潮流中的非線性潮流計算模型。由于代理模型隨著變量維數的增加引入了大量對響應無影響的多項式,提出了多項式稀疏化處理方法。首先,利用多項式展開系數分析變量的一階一次、一階二次及二階多項式的靈敏度,從多項式靈敏度的角度進行稀疏。進而基于Lasso回歸,將變量按影響大小進行排序篩選,從變量的影響貢獻度角度進行稀疏。然后,建立配電網靜態安全風險評估指標,用所提方法對風險指標進行量化分析。最后,依托IEEE 33和IEEE 118節點測試系統進行算例仿真,驗證了所提稀疏化方法的有效性,在兼顧計算準確性的同時,極大地提升了配電網在線風險評估的效率。

     

    Abstract: Under the context of energy decarbonization and transformation, addressing the issues of flow uncertainty characterization and quantification in risk assessment of distribution networks with a high proportion of new energy sources, a method based on Lasso regression and sparse polynomial chaos expansion for risk assessment of distribution networks has been proposed. By introducing polynomial chaos expansion theory, an auxiliary model is established to replace the traditional nonlinear power flow calculation model in stochastic power flow analysis. Since the auxiliary model introduces a large number of polynomials that do not affect the response as the number of variables increases, a polynomial sparsification method is proposed. Firstly, by analyzing the polynomial expansion coefficients, the sensitivity of variables to first-order linear, first-order quadratic, and second-order polynomials is evaluated, and sparsification is performed from the perspective of polynomial sensitivity. Subsequently, based on Lasso regression, the variables are ranked and selected according to their impact magnitude, allowing for sparsification from the perspective of the contribution of variables. Then, static security risk assessment indices for the distribution network were established, and the proposed method was used to quantify these risk indices. Finally, case simulations were conducted using the IEEE 33-node and IEEE 118-node test systems to verify the effectiveness of the proposed sparsification method. This method significantly improved the efficiency of online risk assessment for the distribution network while maintaining computational accuracy.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164