<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

銻冶煉砷堿渣短流程制備金屬砷基礎研究

Basic research on the preparation of metallic arsenic via a short process from arsenic-alkali slag in antimony smelting

  • 摘要: 金屬砷是半導體材料的核心原料. 銻冶煉砷堿渣中砷含量高、成分復雜,利用其制備金屬砷的關鍵在于砷與各種雜質的高效分離. 本文基于砷地球化學成礦原理,創新性提出了砷酸復鹽高精度礦化沉淀理論,開發了砷酸復鹽一步還原焙燒制備金屬砷的關鍵技術,突破了高堿/鹽溶液中砷與堿、相似雜質的高效分離難題,實現了含砷固廢短流程高效制備金屬砷. 研究表明:采用雙氧水進行氧化浸出實現了砷堿渣中砷的高效選擇性脫除,最佳反應條件下浸出液中堿、砷與硫組分含量較高;通過碳化處理浸出液回收堿,產品中堿含量達98.79%;砷酸復鹽礦化沉淀實現了砷酸鹽和碳酸氫鹽的選擇性分離,含砷渣品位達29.75%;通過對高砷渣中加入碳粉進行還原焙燒處理,得到了純度達99.81%的金屬砷單質,單質砷中銻、硫雜質的含量僅為3%和0.16%,分析還原焙燒過程和冷凝過程中溫度與吉布斯自由能的關系可知,為避免影響單質金屬砷的品質,硫酸鹽還原過程溫度應設為620℃,增加還原物質碳粉用量或者升高還原焙燒溫度,均有利于提高還原揮發效率以及降低單質砷中硫雜質的含量. 本研究不僅可以為含砷固廢的資源化處置提供理論依據,還有望為金屬砷的高效制備提供技術支撐.

     

    Abstract: Metallic arsenic is a critical raw material in the semiconductor industry. Arsenic-alkali slag from antimony smelting contains a high concentration of arsenic and has a complex composition. The key to preparing metallic arsenic lies in the efficient separation of arsenic from various impurities. In this study, based on the geochemical mineralization principles of arsenic, we propose an innovative theory of high-precision mineralization and precipitation of arsenate complex salts. We developed a key technology involving one-step reduction roasting of arsenate complex salt precursors for metallic arsenic production. This approach overcomes the challenges of efficiently separating arsenic and alkali in high alkali/salt solutions and similar issues with impurity separation, enabling a shortened process for converting arsenic-containing solid waste into high-purity metallic arsenic. Our findings show that oxidative leaching using hydrogen peroxide enables effective and selective removal of arsenic from arsenic-alkali residue. The liquid-solid ratio, temperature, and hydrogen peroxide dosage significantly influence the leaching rate. Under optimal reaction conditions, the leachate contains high concentration of alkali, arsenic, and sulfur. Carbonation of the leachate allows for alkali recovery, yielding a product with an alkali content of up to 98.79% and a uniform particle size distribution. Arsenate salt mineralization and precipitation achieve selective separation of arsenate from bicarbonate and alkali. With increased dosage of ammonium salts and magnesium sources, the arsenic removal rate improves. The arsenic content in slag increases with magnesium salt dosage and then decreases. Reaction time positively influences arsenic removal, while higher temperatures reduce both the arsenic removal rate and the arsenic grade in slag, the latter reaching 29.75%. Through reduction roasting of high-arsenic slag using carbon powder, metallic arsenic with 99.81% purity was obtained. The monomeric arsenic contained only 0.03% antimony and 0.16% sulfur impurities. Analysis of the reduction roasting and condensation processes, considering the temperature and Gibbs free energy, indicates that to maintain the quality of the metallic arsenic monomers, sulfate reduction should occur at 620 °C. Increasing the carbon powder dosage or elevating the roasting temperature promotes reduction volatilization and lowers sulfur impurity content in the final product. This study provides both a theoretical basis for the resource-efficient disposal of arsenic-containing solid waste and technical support for the efficient preparation of metallic arsenic.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164