<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

剛性基層瀝青路面壓-剪行為與模量過渡研究

* 黃優,E-mail: hyzju@csust.edu.cn

  • 摘要: 基層剛度影響著瀝青路面結構的受力狀態及破壞模式,為了深入研究剛性基層上瀝青路面的力學行為特征,改善剛柔復合式路面的結構力學性能,推導了瀝青混合料的黏彈塑性本構,建立了剛柔復合式路面熱-力耦合模型,提取了瀝青層內部的溫度-模量場,開展了熱力耦合作用下剛柔復合式路面力學行為分析,提出了剛柔復合式路面模量梯度結構。結果表明:瀝青層內部在環境溫度下存在明顯溫度梯度,導致瀝青層內部產生隨時空變化的模量梯度;明確了熱力耦合作用下復合式路面瀝青層壓-剪力學行為,設計時應重點考慮剛性基層上瀝青面層的剪應力;當基層模量與面層模量接近以及瀝青面層模量沿深度梯度增加時,瀝青層剪應力較小,因此有必要在復合式路面設置模量過渡層,以協調面層與基層之間的模量差異,降低瀝青面層的剪應力;最后基于響應曲面模型,以復合式路面瀝青層最大剪應力最小為優化目標,得到復合式路面模量過渡結構為:瀝青上面層厚度4cm,過渡層厚度8cm,過渡層模量為瀝青層模量的2倍,上面層剪應力與過渡層剪應力較不設過渡層的復合式路面對應層位分別降低了14.3%和20.5%。研究成果可為剛性基層瀝青路面的結構力學行為及材料研發提供參考。

     

    Abstract: The stiffness of the base layer significantly influences the mechanical state and failure modes of asphalt pavement structures. To investigate the mechanical behavior of asphalt pavements on rigid bases and improve the structural performance of rigid-flexible composite pavements, this study derived a viscoelastic-plastic constitutive model for asphalt mixtures, established a thermo-mechanical coupling model for composite pavements, extracted the temperature-modulus fields within the asphalt layer, and analyzed the mechanical response under coupled thermal-mechanical loading. A modulus gradient structure for composite pavements was proposed. The results indicate that significant temperature gradients exist within the asphalt layer under environmental thermal conditions, leading to spatiotemporal modulus gradients. The compressive-shear mechanical behavior of the asphalt layer in composite pavements under thermo-mechanical coupling was clarified, emphasizing the critical role of shear stress in asphalt layers over rigid bases during design. When the base layer modulus approaches the surface layer modulus and the asphalt layer modulus increases gradiently with depth, the shear stress in the asphalt layer decreases. Therefore, introducing a modulus transition layer between the asphalt surface and rigid base is essential to mitigate modulus mismatch and reduce shear stress. Based on the response surface model (RSM) with the minimization of maximum shear stress as the optimization target, the optimal modulus transition structure was determined: a 4 cm upper asphalt layer, an 8 cm transition layer with a modulus twice that of the asphalt layer. This configuration reduced the shear stress in the upper layer and transition layer by ??14.3%?? and ??20.5%??, respectively, compared to a structure without a transition layer. The findings provide theoretical support for the structural design and material development of rigid-base asphalt pavements.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164