<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

堿激發礦渣-粉煤灰改良濕陷性黃土力學特性及微觀機理

Mechanical properties and microscopic mechanisms of alkali-activated slag-fly ash modified collapsible loess

  • 摘要: 黃土是我國西北地區廣泛分布的典型水敏性軟弱土,具有黏聚力低、浸水易陷等工程特性,嚴重制約基礎設施建設。針對傳統水泥基固化材料碳排放高、經濟效益差等問題,本研究采用堿激發礦渣-粉煤灰地質聚合物(簡稱“地聚物”)改良濕陷性黃土。系統研究了前驅體礦渣/粉煤灰配比、激發劑NaOH/水玻璃配比及養護齡期對固化土物理力學性能的影響規律,結合X射線衍射(XRD)與掃描電鏡(SEM)分析,揭示了改良黃土的強度形成機制。結果表明:當前驅體中礦渣占比由0%增至100%時,固化黃土的無側限抗壓強度呈顯著增長趨勢;養護7d后試樣的含水率隨礦渣占比增加而降低,但養護28d試樣的含水率變化呈現相反規律。堿激發劑配比對固化土的影響存在閾值效應:高礦渣體系(礦渣≥80%)強度隨NaOH比例增加呈先升后降趨勢,而高粉煤灰體系(粉煤灰≥80%)強度則隨NaOH比例增加持續上升。微觀表征顯示,地聚物主要生成水化硅酸鈣(C-S-H)與水化硅鋁酸鈣(C-A-S-H)凝膠,其膠結效應是強度提升的主導機制,孔隙填充作用為次要貢獻因素。本研究為工業固廢資源化與黃土路基綠色加固提供科學依據。

     

    Abstract: Loess, a typical water-sensitive weak soil widely distributed in Northwest China, exhibits low cohesion and collapsibility when saturated, severely infrastructure limiting development. To address the high-carbon emissions and poor economic efficiency of traditional cement-based binders, this study employs alkali-activated slag-fly ash geopolymers to improve collapsible loess. The effects of precursor slag/fly ash ratios, alkaline activator (NaOH/sodium silicate) ratios, and curing ages on the physical and mechanical properties of the stabilized loess were systematically investigated. The strength development mechanism of the improved loess was revealed through X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. Results show that as the slag content in the precursor increases from 0 to 100%, the unconfined compressive strength (UCS) of the stabilized loess exhibits a significant upward trend. After 7 days of curing, the water content of the samples decreases with increasing slag content, but after 28 days, the water content changes show an opposite trend. The alkaline activator ratio exhibits a threshold effect on the stabilized soil: the strength initially increases and then decreases with increasing NaOH ratio in high-slag systems (slag ≥80%), while the strength continuously increases with rising NaOH ratio in high-fly ash systems (fly ash ≥80%). Microstructural characterization reveals that the geopolymers primarily form calcium silicate hydrate (C-S-H) and calcium aluminosilicate hydrate (C-A-S-H) gels, whose cementation effect is the dominant mechanism for strength enhancement, while pore-filling effects contribute secondarily. This study provides a scientific basis for the resource utilization of industrial solid waste and green reinforcement of loess subgrades.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164