<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于預瞄曲率信息與狀態協調的預測時域自適應NMPC

Adaptive Prediction Horizon NMPC with Previewed Curvature Information and State Coordination

  • 摘要: 在整體式車輛穩定性軌跡跟蹤控制架構的基礎之上,設計了一種引入預瞄曲率信息的自適應預測時域非線性模型預測控制(NMPC)。基于預瞄的參考路徑曲率點列指導控制維度變化,提升控制器對于路徑曲率的動態響應能力;進一步地,引入狀態協調優化機制,使控制器顯示耦合至上一控制周期的車輛狀態空間,有效避免預測時域變化造成的多步優化問題解耦效應,抑制因控制輸入突變對軌跡跟蹤控制任務的影響。結合兩種優化方法,有效改善固定預測時域策略在高曲率軌跡跟蹤中因累計誤差造成的跟蹤精度下降問題。最后,基于MATLAB/Simulink-CarSim聯合仿真平臺對算法進行了驗證。經計算,高速單移線工況下,該方法在側向偏差均值/峰值、縱向偏差均值/峰值、航向偏差均值/峰值指標中,相較于固定預測時域NMPC同比降低36.17%/15.25%、11.55%/38.58%、6.13%/25.27%;高速雙移線工況下,同比降低30.28%/29.77%、25.07%/3.85%、11.02%/2.68%。此外,在高速低附著工況中,該方法仍能保證良好的控制精度及側向穩定性,其峰值側向偏差為0.2017m、峰值縱向偏差為0.9744 kmh-1、峰值航向偏差為1.1936°、峰值質心側偏角為1.9074°。

     

    Abstract: Building upon an integrated vehicle stability and trajectory tracking control framework, this study proposes an adaptive prediction horizon nonlinear model predictive control (NMPC) strategy incorporating previewed curvature information. By leveraging a preview-based reference path curvature point sequence to dynamically adjust control parameters, the proposed method enhances the controller’s responsiveness to path curvature variations and mitigates tracking accuracy degradation caused by accumulated errors in fixed-horizon strategies during high-curvature trajectory tracking. A state coordination optimization mechanism is introduced to explicitly couple the controller with the vehicle state space from the previous control cycle, effectively suppressing decoupling effects in multi-step optimization problems induced by prediction horizon variations and minimizing control input discontinuities. Validation via MATLAB/Simulink-CarSim co-simulation demonstrates significant improvements: in high-speed single lane-change scenarios, the method reduces average/peak lateral deviations by 36.17%/15.25%, average/peak longitudinal deviations by 11.55%/38.58%, and average/peak heading deviations by 6.13%/25.27% compared to fixed-horizon NMPC; in high-speed double lane-change scenarios, it achieves reductions of 30.28%/29.77% (lateral), 25.07%/3.85% (longitudinal), and 11.02%/32.68% (heading). Under high-speed low-adhesion conditions (μ=0.4), the method maintains robust precision and stability with peak lateral deviation at 0.2017 m, peak longitudinal deviation at 0.9744 km/h, peak heading deviation at 1.1936°, and peak centroid sideslip angle at 1.9074°。

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164