<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

失效石墨負極的材料包覆修復技術研究進展

Progress of material coating repair technology for failed graphite anode

  • 摘要: 隨著新能源汽車行業的快速發展,對大容量、高性能的電池需求量迅速上升,鋰電池因其高能量密度、循環壽命長、低自放電率等優勢在新能源汽車領域得到廣泛應用。隨著鋰電池的大量使用,石墨負極的需求迅速上升。作為鋰電池的關鍵組成部分,石墨憑借其低成本、高能量密度、優異的導電性和良好的循環穩定性成為了商業化鋰電池中最主要的負極材料。然而,隨著鋰電池循環次數的增加,石墨負極表面會逐漸形成固體電解質(SEI)界面層和鋰枝晶,導致石墨結構受損,電化學性能下降,這會導致大量的石墨資源浪費。為了實現石墨的可持續發展,我們需對失效石墨負極進行再生修復,再次投入試用。本文綜述了材料包覆技術在修復失效石墨負極中的應用進展,介紹了失效石墨負極的除雜方法,著重介紹了瀝青包覆修復、金屬氧化物包覆修復和聚合物包覆修復這三種方法對失效石墨負極的修復作用。這些包覆技術能夠有效修復失效石墨受損的結構,恢復其電化學性能。最后,本文提出了目前材料包覆技術所面臨的挑戰,并對未來研究方向提出了展望,以促進新能源電池產業的可持續發展。

     

    Abstract: With the rapid development of new energy automobile industry, the demand for large capacity, high performance battery is rising rapidly, lithium battery is widely used in new energy automobile field because of its high energy density, long cycle life, low self-discharge rate and other advantages. Accompanied by the large number of lithium batteries, the demand for graphite anode is rising rapidly. As a key component of lithium batteries, graphite has become the most dominant anode material in commercial lithium batteries by virtue of its lower cost, higher energy density, excellent electrical conductivity and good cycle stability. However, as the number of lithium battery cycles increases, solid electrolyte (SEI) interface layer and lithium dendrites will gradually form on the surface of graphite anode, leading to the damage of graphite structure and the decrease of electrochemical performance, which will lead to a large amount of wasted graphite resources. In order to achieve the sustainable development of graphite, we need to regenerate and repair the failed graphite anode and put it into trial again. In this paper, we review the progress of the application of material coating technology in the repair of failed graphite anode, we briefly introduce the decontamination methods of failed graphite anode, and then we focus on the repair of failed graphite anode by three methods, namely, asphalt coating repair, metal oxide coating repair and polymer coating repair. These coating techniques can effectively repair the damaged structure of the failed graphite and restore its electrochemical performance. Finally, this paper puts forward the challenges faced by the current material capping technology and puts forward an outlook on the future research direction to promote the sustainable development of the new energy battery industry.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164