<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

多維度調控策略:鋼渣體積穩定性處理方法綜述

Multidimensional control strategy: A review of treatment methods for volume stability of steel slag

  • 摘要: 鋼渣是冶金企業產生的主要固體廢棄物,因其產量大,有效利用率低,對生態環境造成了嚴重危害,鋼渣體積穩定性差是阻礙其規模化應用的主要原因,如何有效提升鋼渣體積穩定性是關鍵. 本文著眼于鋼渣體積膨脹特性,多維度分析了鋼渣體積穩定性調控的研究進展. 分析結果表明:對于熔融態鋼渣,調質法和工藝法均能顯著降低鋼渣中的活性物質含量,實現對鋼渣體積穩定性的調控. 對于冷卻后的固態鋼渣,以其主要利用形式鋼渣骨料(SSA)和鋼渣微粉(SSP)分別展開論述. SSA體積穩定性調控方法主要為陳化處理、碳化處理、表面改性處理,其中陳化處理為目前SSA體積穩定性處理的主要手段,自然陳化處理周期長且均勻性差,通過施加溫度、壓力、濕度等外部條件后,可大幅度縮短處理周期,但存在廢水處理量大、能耗高、SSA質量下降等缺點;對SSA可采用直接碳化處理及間接碳化法的pH值波動法,其中直接碳化處理通過施加溫度、壓力、CO2濃度、催化劑等提高SSA碳化效率,從而降低SSA的膨脹風險;表面改性主要分為無機改性和有機改性,改性處理后顯著降低SSA體積膨脹風險,但酸處理產生難以處理的廢液,有機材料處理存在成膜效果差,彈性高,易脆性損傷等缺點. SSP體積穩定性調控方法主要為研磨處理、碳化處理、表面改性處理及聯合處理,機械研磨處理通過降低SSP的粒徑提高其水化活性,進而降低SSP的體積膨脹風險;SSP碳化處理方法多樣,除直接碳化外,間接碳化通過調節pH值或者使用微生物,誘導SSP中的堿金屬離子沉淀,獲得了更高的碳化效率,且不依賴傳統的碳化設備,雖然步驟繁瑣,但不需要嚴格的外部條件,尤其是微生物碳化法,其碳化效率高達90%~95%;SSP表面改性主要分為無機改性和有機改性,其中有機改性主要為酸處理,處理后SSP的比表面積增加,水化活性提高,體積穩定性增強;聯合多種方法對SSP進行預處理效果更好,其中,碳化處理聯合其他方法,無論與酸處理,堿活化,還是通過碳化制備人工鋼渣骨料,相較于單一處理,進一步提高了SSP體積穩定性. 以人工鋼渣骨料制備的混凝土表現出優異的性能,緩解了天然骨料匱乏的局面,研究及應用前景廣闊.

     

    Abstract: Steel slag is the main solid waste produced by metallurgical enterprises. Its high output and low utilization rate have caused significant harm to the ecological environment. Poor volume stability is the primary factor hindering the large-scale application of steel slag. This paper focuses on the volume expansion characteristics of steel slag and analyzes research progress on volume stability control from multiple dimensions. The results show that both tempering methods and process methods can significantly reduce the content of active substances in molten steel slag and effectively regulate its volume stability. Cooled solid steel slag is mainly utilized in two forms: steel slag aggregate (SSA) and steel slag powder (SSP). Key methods for controlling SSA volume stability include aging treatment, carbonization treatment, and surface modification. Among these, aging is currently the primary method. However, natural aging requires a long period and lacks uniformity. This process can be significantly shortened by applying external conditions such as temperature, pressure, and humidity, though this leads to disadvantages such as high wastewater treatment demands, elevated energy consumption, and reduced SSA quality. The pH value fluctuation method was applied to both direct and indirect carbonization treatments. Direct carbonization efficiency can be improved by optimizing temperature, pressure, CO2 concentration, and catalysts, thereby reducing SSA expansion risk. Surface modification is classified into inorganic and organic modification methods, both of which significantly reduce volume expansion risk. However, acid treatment generates waste liquids that are difficult to manage, and organic modification suffers from limitations such as poor film formation, high elasticity, and brittleness. For SSP, primary control methods include grinding, carbonization, surface modification, and combined treatments. Grinding reduces particle size, thereby enhancing hydration activity and reducing volume expansion risk. SSP carbonization methods are diverse; beyond direct carbonization, indirect methods such as pH adjustment or microbial treatments induce alkali metal ion precipitation, achieving high carbonization efficiency without reliance on traditional equipment. Though complex, these methods do not require strict external conditions. Microbial carbonization, in particular, reaches efficiencies of 90%–95%. Surface modification of SSP is also divided into inorganic and organic methods, with acid treatment being the main organic approach. Post-treatment, SSP exhibits increased specific surface area, hydration activity, and volume stability. Combining treatment methods yields better results; among them, carbonization paired with acid treatment, alkali activation, or artificial aggregate preparation further enhances SSP volume stability compared to single treatments. Concrete made from artificial steel slag aggregate demonstrates excellent performance, mitigates the shortage of natural aggregates, and holds promising potential for research and practical applications.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164