<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

鈦微合金鋼連續冷卻過程中納米碳化物的析出控制研究

1Control of Nano-Sized Carbide Precipitation During Continuous Cooling in Titanium Microalloyed Steels

  • 摘要: 本文采用Gleeble-3800熱模擬實驗機、透射電子顯微鏡和顯微硬度計等研究了鈦微合金鋼不同冷卻工藝下的相變、析出和力學性能。結果表明:實驗鋼在900℃變形后,隨著冷卻速率升高,室溫組織的顯微硬度總體呈上升趨勢,但緩慢冷卻的γ→α相變有助于納米碳化物析出,并因其沉淀強化作用在0.5℃/s的冷速下出現硬度峰值,為260±9.9 HV。隨后采用兩階段控制冷卻工藝,以20℃/s快冷到相變開始溫度635℃后,在0.1℃/s冷速下顯微硬度最高,為275±11.3 HV,析出粒子平均尺寸2.55nm;分段溫度為700℃,硬度峰值260.6±8.1 HV出現在0.5℃/s,粒子平均尺寸為6.73 nm;而600℃的分段溫度則抑制了鐵素體相變,室溫組織的硬度普遍更低。采用中厚板工藝生產鈦微合金化高強鋼,為充分促進納米碳化物析出,發揮其沉淀強化效果,應控制層流冷卻的終冷溫度接近于相變開始溫度,隨后采用堆垛、緩冷坑、熱蒸汽冷卻等降低冷速的工藝措施。如層流冷卻后采用空冷,納米碳化物仍可發揮一定沉淀強化效果,但應該設定較高的終冷溫度(如700℃)。

     

    Abstract: This study investigates the phase transformation, precipitation behavior, and mechanical properties of titanium microalloyed steel under different cooling processes using a Gleeble-3800 thermal simulator, transmission electron microscopy (TEM), and microhardness testing. The results indicate that after deformation at 900°C, the microhardness of the room-temperature microstructure generally increases with higher cooling rates. However, slow cooling facilitates the γ→α phase transformation, promoting the precipitation of nano-sized carbides. A hardness peak of 260 ± 9.9 HV is observed at a cooling rate of 0.5°C/s due to precipitation strengthening. A two-stage controlled cooling process is subsequently employed: rapid cooling at 20°C/s to the phase transformation start temperature of 635°C, followed by slow cooling at 0.1°C/s, which results in the highest microhardness of 275 ± 11.3 HV and an average precipitate size of 2.55 nm. When the partitioning temperature is set at 700°C, a hardness peak of 260.6 ± 8.1 HV is achieved at 0.5°C/s, with an average precipitate size of 6.73 nm. In contrast, a partitioning temperature of 600°C suppresses ferrite transformation, leading to lower overall hardness in the room-temperature microstructure. For the production of titanium microalloyed high-strength steel using medium-thick plate processes, to fully promote the precipitation of nano-sized carbides and maximize their strengthening effect, the finish cooling temperature during laminar cooling should be controlled close to the phase transformation start temperature. Subsequent cooling rate reduction measures, such as stacking, slow cooling pits, or steam cooling, are recommended. If air cooling is applied after laminar cooling, nano-sized carbides can still contribute to precipitation strengthening, but a higher finish cooling temperature (e.g., 700°C) should be maintained.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164