<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

顆粒尺寸效應對納米流體導熱系數、粘度系數和導電系數的影響研究綜述

Effect of particle size on the thermal conductivity, viscosity, and electrical conductivity of nanofluids: A review

  • 摘要: 納米流體作為一種新興的傳熱傳質介質,在工程和生物醫學領域展現出廣泛的應用潛力,其物性參數的調控是研究的關鍵問題. 本文結合實驗數據、理論模型和經驗關聯式,系統分析了顆粒尺寸對納米流體有效導熱系數、粘度系數和導電系數的影響,并探討了顆粒體積分數和溫度等因素的作用機制. 研究表明,不同物性參數對顆粒尺寸的響應存在顯著差異。導熱系數受到界面散射、界面熱阻和布朗運動等因素的共同影響,因此存在一個最優顆粒尺寸以實現最大化的傳熱效率;粘度系數由于顆粒界面效應的復雜性,其隨顆粒尺寸變化的趨勢尚無統一結論;而導電系數則隨著顆粒尺寸的減小顯著增加,這主要是由于電雙層重疊效應的增強. 此外,本文對不同顆粒尺寸條件下的部分實驗數據、經典理論模型和經驗關聯式進行了對比分析. 結果表明,傳統理論模型在描述納米流體物性變化方面存在一定局限,而相較于理論公式,經驗關聯式能夠更準確地擬合實驗結果,并將微觀尺度上顆粒尺寸的變化有效地反映到宏觀物性參數的模型中. 通過系統分析顆粒尺寸對納米流體物性的微觀調控機制,本研究為納米流體在傳熱傳質及其他應用場景中的優化設計和數值模擬提供了重要參考.

     

    Abstract: Nanofluids, as an emerging heat and mass transfer medium, exhibit broad application potential in engineering and biomedical fields. The regulation of effective physical properties is a key research issue. The study integrates experimental data, theoretical models, and empirical correlations to systematically examine the impact of particle size on the effective thermal conductivity, viscosity, and electrical conductivity of nanofluids. Additionally, it investigates the influence of particle volume fraction and temperature on these properties. Research illustrates that different effective physical properties respond significantly differently to particle size. The effective thermal conductivity is influenced by a combination of factors including interface scattering, interfacial thermal resistance, and Brownian motion, exhibiting an optimal particle size. The viscosity shows some discrepancies in its trend with particle size due to the complexity of particle interface effect.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164